6 research outputs found

    Rapid Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates Directly from Clinical Samples.

    Get PDF
    The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistant Mycobacterium tuberculosis. Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular tests, this has previously been achievable only from cultures of M. tuberculosis. Here we describe a method utilizing biotinylated RNA baits designed specifically for M. tuberculosis DNA to capture full M. tuberculosis genomes directly from infected sputum samples, allowing whole-genome sequencing without the requirement of culture. This was carried out on 24 smear-positive sputum samples, collected from the United Kingdom and Lithuania where a matched culture sample was available, and 2 samples that had failed to grow in culture. M. tuberculosis sequencing data were obtained directly from all 24 smear-positive culture-positive sputa, of which 20 were of high quality (>20× depth and >90% of the genome covered). Results were compared with those of conventional molecular and culture-based methods, and high levels of concordance between phenotypical resistance and predicted resistance based on genotype were observed. High-quality sequence data were obtained from one smear-positive culture-negative case. This study demonstrated for the first time the successful and accurate sequencing of M. tuberculosis genomes directly from uncultured sputa. Identification of known resistance mutations within a week of sample receipt offers the prospect for personalized rather than empirical treatment of drug-resistant tuberculosis, including the use of antimicrobial-sparing regimens, leading to improved outcomes

    Mutations in FAM111B cause hereditary fibrosing poikiloderma with tendon contracture, myopathy, and plumonary fibrosis

    Get PDF
    Congenital poikiloderma is characterized by a combination of mottled pigmentation, telangiectasia, and epidermal atrophy in the first few months of life. We have previously described a South African European-descent family affected by a rare autosomal-dominant form of hereditary fibrosing poikiloderma accompanied by tendon contracture, myopathy, and pulmonary fibrosis. Here, we report the identification of causative mutations in FAM111B by whole-exome sequencing. In total, three FAM111B missense mutations were identified in five kindreds of different ethnic backgrounds. The mutation segregated with the disease in one large pedigree, and mutations were de novo in two other pedigrees. All three mutations were absent from public databases and were not observed on Sanger sequencing of 388 ethnically matched control subjects. The three single-nucleotide mutations code for amino acid changes that are clustered within a putative trypsin-like cysteine/serine peptidase domain of FAM111B. These findings provide evidence of the involvement of FAM111B in congenital poikiloderma and multisystem fibrosis
    corecore