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Abstract 32 

The rapid identification of antimicrobial resistance is essential for effective treatment 33 

of highly resistant Mycobacterium tuberculosis (M. tb). Whole genome sequencing 34 

provides comprehensive data on resistance mutations and strain typing for 35 

monitoring transmission, but unlike conventional molecular tests, this has only 36 

previously been achievable from cultured M. tb. Here we describe a method utilising 37 

biotinylated RNA baits, designed specifically for M. tb DNA to capture full M. tb 38 

genomes directly from infected sputum samples, allowing whole genome sequencing 39 

without the requirement of culture. This was carried out on 24 smear-positive sputum 40 

samples, collected from the UK and Lithuania where a matched culture sample was 41 

available, and two samplesthat had failed to grow in culture. M. tb sequencing data 42 

was obtained directly from all 24 smear-positive culture-positive sputa, of which 20 43 

were high quality (>20x depth and >90% of genome covered). Results were 44 

compared with conventional molecular and culture-based methods, and high levels 45 

of concordance were observed between phenotypical resistance and predicted 46 

resistance based on genotype. High quality sequence data was obtained from one 47 

smear positive culture negative case. This study demonstrates for the first time, the 48 

successful and accurate sequencing of M. tb genomes directly from uncultured 49 

sputa. Identification of known resistance mutations within a week of sample receipt 50 

offers the prospect for personalised, rather than empirical, treatment of drug resistant 51 

tuberculosis, including the use of antimicrobial-sparing regimens, leading to 52 

improved outcomes. 53 

 54 

 55 
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 60 

Introduction 61 

The global incidence of multi, extensively and totally drug resistant tuberculosis has 62 

risen over the last decade (1), making it increasingly important to rapidly and 63 

accurately detect resistance. The gold standard for antimicrobial resistance testing 64 

relies on bacterial culture, which for M. tb can take upwards of several weeks. 65 

Molecular tests, such as the Xpert (MTB/RIF) and line probe assays, which can be 66 

used directly on sputum have improved identification of multi-drug resistant (MDR) 67 

M.tb but are only able to identify limited numbers of specific resistance mutations (2, 68 

3). 69 

Whole bacterial genome sequencing (WGS) allows simultaneous identification of all 70 

known resistance mutations as well as markers with which transmission can be 71 

monitored (4). WGS of M.tb provides superior resolution over other current methods 72 

such as spoligotyping and MIRU-VNTR for strain genotyping (5) and its usefulness in 73 

defining outbreaks has been demonstrated (6-9). Currently however, WGS of M. tb 74 

requires prior bacterial enrichment by culturing and therefore most outbreak studies 75 

have been retrospective (6-8). Recently WGS of M. tb has been achieved from 76 

three-day old MGIT (Mycobacterial growth indicator tube) culture, thus reducing the 77 

time from sample receipt to resistance testing to less than a week (10). However, 78 
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with the mean time to positive MGIT culture being 14 days (11, 12), most WGS 79 

results will not be available for more than two weeks, which is too long a delay 80 

before starting therapy. Moreover, the extent to which even limited culture perturbs 81 

the original sample composition remains unknown, especially in cases where a 82 

patient is suffering from infection with multiple strains, a common occurrence in 83 

developing countries where it has been observed in up to 19% of cases (13). As 84 

described here we utilised the oligonucleotide enrichment technology SureSelectXT 85 

(Agilent) method to obtain the first M. tb genome sequences directly from both smear 86 

positive and smear negative sputum.  87 

 88 

Methods 89 

Samples 90 

A total of 58 routine diagnostic samples from the UK and Lithuania, including 24 91 

smear-positive sputum specimens from pulmonary TB patients and 24 matching 92 

cultures (grown on Middlebrook 7H11 plates from the relevant sputum specimens, 93 

see below), and 10 sputum samples from patients who had previously been 94 

diagnosed with TB and which failed to grow in culture, were analysed. Further details 95 

can be found in supplementary table 1. Sputum was visually scored as 1+ to 3+ for 96 

acid fast bacilli (AFBs). Sequencing and subsequent analysis were processed blind 97 

with respect to smear and resistance results. 98 

Bacteriological methods  99 

Prior to treatment, all sputum specimens were kept frozen at -20 ˚C. Bacteriological 100 

culture samples were processed as follows. Samples were decontaminated using N-101 
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acetyl-L-cysteine/NAOH (1% NaOH final concentration) and re-suspended after 102 

centrifugation in 2 mL phosphate buffer (pH 6.8). Subsequently, 0.1 ml of the 103 

suspension was used for inoculation onto Middlebrook 7H11 media while the 104 

remaining suspension was used for the genomic DNA extraction directly from 105 

sputum (see below). Plates were incubated at 37 ˚C for at least four weeks or until 106 

visible growth was obtained. 107 

DNA extraction from sputum 108 

The bacterial suspension used for inoculation was re-pelleted by centrifugation at 109 

16,000 g. Supernatants were decanted, and pelleted cells re-suspended in 0.3 mL  110 

Tris-EDTA (TE), buffer and transferred to sterile 2 mL screw caps tubes containing 111 

~250 µL 0.1 mm glass beads (Becton Dickinson). Microorganisms were heat killed at 112 

80˚C for 50 minutes and then frozen at -20˚C; after thawing the tubes were vortexed 113 

for three minutes and centrifuged for five minutes at 16,000 g. The supernatant was 114 

transferred to a clean 2mL tube for subsequent DNA purification using the DNeasy 115 

Blood and Tissue DNA extraction Kit (Qiagen) as per manufacturer’s instructions. 116 

Genome copies were measured in the sputum samples using the Artus® M. 117 

tuberculosis RG PCR Kit (Qiagen), as per manufacturer’s instructions. 118 

DNA extraction from cultures 119 

Two loopfuls of M.tb growth from Middlebrook 7H11 plates were transferred into 2 120 

mL screw caps tubes containing ~250 µL of 0.1mm glass beads (Becton Dickinson) 121 

and 0.3 mL TE buffer. Subsequent processing, genomic DNA extraction and 122 

purification were done as described for the sputum samples.  123 

Resistance profiling  124 
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All isolates were tested for susceptibility to first line drugs rifampicin (RIF), isoniazid 125 

(INH), ethambutol (EMB), pyrazinamide (PZA), and streptomycin (STR). Isolates 126 

resistant to at least RIF and INH (i.e. multidrug resistant, MDR-TB) were additionally 127 

tested for susceptibility to kanamycin (KAN), amikacin (Amk), ofloxacin (OFL), 128 

capreomycin (CAP), ethionamide (ETH), prothionamide (PTH), and par-129 

aminoasalicylate sodium (PAS). 130 

 131 

Drug susceptibility testing (DST) was carried out on an automated liquid media-132 

based system Bactec MGIT960 (Becton Dickinson) using standard drug 133 

concentrations (in micrograms per millilitre) as follows: STR 1.0; INH 0.1; RIF 1.0; 134 

EMB 5.0; PZA 100.0; OFL 2.0; Amk 1.0; CAP 2.5; KAN 5.0; ETH 5.0; PTH 2.5; and 135 

PAS 4.0.(14)  136 

Spoligotyping  137 

Spoligotyping was carried out as described previously using membranes with 138 

immobilised oligonucleotide probes (Ocimum Biosolutions) (15). For identification of 139 

genetic families and lineages, 43-digit binary spoligotyping codes were entered into 140 

MIRU-VNTRplus database (www.miru-vntrplus.org) and families identified using 141 

similarity search algorithm. 142 

SureSelectXT Target Enrichment: RNA baits design 143 

120-mer RNA baits spanning the length of the positive strand of H37Rv M. tb 144 

reference genome (AL123456.3),(16) were designed using an in-house Perl script 145 

developed by the PATHSEEK consortium. The specificity of the baits was verified by 146 

BLASTn searches against the Human Genomic + Transcript database. The custom 147 
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designed M. tuberculosis bait library was uploaded to SureDesign and synthesised 148 

by Agilent Technologies. 149 

 150 

SureSelectXT Target Enrichment: Library preparation, hybridisation and Illumina 151 

sequencing. 152 

Prior to processing M.tb DNA samples were quantified and carrier human genomic 153 

DNA (Promega) was added to obtain a total of 3 µg DNA input for library preparation. 154 

All DNA samples were sheared for 4x60 seconds using a Covaris S2 (duty cycle 155 

10%, intensity 4 and 200 cycles per burst using frequency sweeping). The samples 156 

were then subjected to library preparation using the SureSelectXT Target Enrichment 157 

System for Illumina Paired-End Sequencing Library protocol (V1.4.1 Sept 2012). 158 

Prior to hybridisation eight cycles of pre-capture PCR was used, and ~750 ng of 159 

amplified product was included in each hybridisation (24 hours, 65 ˚C). 16 cycles of 160 

post capture PCR was performed, with indexing primers. The resulting library was 161 

run on a MiSeq (Illumina) using a 600bp reagent kit, typically in pools of 8 or 10, 162 

some sputum smear positive 1+ samples were run in smaller pools to increase 163 

coverage. Base calling and sample demultiplexing were generated as standard on 164 

the MiSeq machine producing paired FASTQ files for each sample. The raw 165 

sequencing data has been deposited on the European Nucleotide archive (upon 166 

acceptance of publication). An overview of the process is presented in 167 

Supplementary figure 1. 168 

Sequence Analysis  169 

The samples were analysed using a reference based mapping approach 170 

implemented in CLC Genomics workbench (v. 7.5). Prior to mapping the reads were 171 
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trimmed to remove low quality sequence at the end of reads or adaptor 172 

contamination. The reads were mapped against the H37Rv genome (AL123456.3) 173 

using default parameters with the addition of  a similarity  threshold to remove non-174 

M.tb reads, by which any reads where at least 90% of the length does not match the 175 

reference by at least 90% were discarded. This was required to remove non-M.tb 176 

reads. Duplicate reads were then removed from the mapped reads, and the average 177 

depth of coverage calculated. The percentage of on-target reads (OTR) was 178 

calculated by counting the number of reads that were successfully mapped to 179 

H37Rv. Any reads that did not map were assumed to be off-target (not M.tb). 180 

Bases were called using VarScan (v 2.3.7),(17) applying high stringency parameters 181 

including a minimum depth of 4 reads, a minimum average quality of 20, a p value 182 

cutoff of 99e-02  and an absence of heterozygosity at a level greater than 10%. A 183 

consensus sequence was generated where only called bases were considered, and 184 

any bases which failed quality thresholds were called as Ns. To build the phylogeny 185 

any variants which were identified in IS elements or the PE, PPE gene families were 186 

excluded, as these regions are recognized to be prone to false positive SNP calls.(8) 187 

The remaining positions (representing 92% of the genome) were then used to build a 188 

maximum likelihood tree using RAxML v 8.0.0(18) with 100 bootstrap replicates. 189 

Genome coverage was calculated by dividing the number of high quality bases 190 

successfully called (as per VarScan above) by the reference genome (H37Rv) size. 191 

Depth of coverage refers to the number of reads supporting a position.  192 

Calling genotypic resistance 193 

Potential drug susceptibility associated variants were detected using a custom Perl 194 

script using positions identified in a curated drug resistance database 195 
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(http://pathogenseq.lshtm.ac.uk/rapiddrdata) (19) from bam and bcf files (20). 196 

Variants were considered if they were supported by at least 2 forward and reverse 197 

reads, had p values of at least 0.05 for strand bias, and 0.001 for read end bias, 198 

base quality bias and mapping quality bias as calculated by bcftools (20). A sample 199 

was called as genotypically resistant if it had a mutation in over 10% of reads. Any 200 

mutation identified in the ribosomal RNA genes were inspected manually to exclude 201 

any that may be the result of off-target enrichment of these highly conserved regions. 202 

Those that were found on reads that formed distinct haplotypes, where variants were 203 

found in close association with other variants on multiple reads were excluded as 204 

they likely belonged to non-M. tb species.  205 

The analysis was also carried out independently on a customized version of the CLC 206 

Genomics Workbench (QIAGEN-AAR), which facilitates a fully-automated pipeline 207 

including the steps of trimming, mapping to reference, removal of duplicate mapped 208 

reads, variant calling and cross-referencing with the resistance database (described 209 

above). Variants called using the automated workflow (using the Low Frequency 210 

Variant Detector, CLC Genomic Workbench), were considered significant if the 211 

average quality was above 30, a frequency greater than 10% and the forward and 212 

reverse read balance was above 0.35. Variants were inspected manually for possible 213 

contamination. The runtime when using a standard laptop (Macbook Pro) was on 214 

average 1h per sample. The resistance genotypes called were in agreement with 215 

those identified using the workflow described above 216 

 217 

Results 218 

 219 

http://pathogenseq.lshtm.ac.uk/rapiddrdata
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Successful enrichment directly from sputum in both smear positive and negative 220 

tuberculosis cases 221 

To assess the potential benefits of enrichment strategies for WGS of clinical M. tb, 222 

we compared the percentage of on-target reads (%OTR), as defined in the methods, 223 

and the mean sequencing depth) for two sputum samples, each processed with and 224 

without enrichment. The average %OTR for M. tb sequenced directly (no-225 

enrichment) from sputum was 0.3%, with 4.6x sequencing depth, compared to with 226 

enrichment which generated a %OTR of 82%, with a mean depth of 200x (Figure 1). 227 

Although cultured M. tb sequenced well with and without enrichment, the former 228 

gave greater mean read depth (Supplementary Figure 2). Even coverage across the 229 

genome was obtained with no bias observed for particular regions or genes 230 

(Supplementary figure 3).   231 

Over 98% of the M. tb genome was recovered from 20 of 24 (83%) smear-positive 232 

culture-positive sputa. Fully complete genomes are not achievable for M. tb using 233 

short-read sequencing technology, due to the difficulties presented by repetitive 234 

regions and the PE and PPE genes (8, 21). Similar levels of genome coverage and 235 

sequencing depth were also obtained from the non-enriched matched cultures 236 

(Figure 2a). The depth of coverage obtained for four sputum samples was poor 237 

(MTB-41: 9x, MTB-42: 14x, MTB-43: 6x and MTB-44: 11x) resulting in a genome 238 

coverage of less than 90%.  In the case of MTB-43 and MTB-44, which had an input 239 

of 1 and <1 genome copies per µl respectively, (these values are out of range of 240 

reliable standards as measured by real-time PCR) this is likely to be due to a low 241 

pathogen load.  242 
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In addition, we were able to enrich and sequence M.tb from two smear-positive but 243 

culture negative sputum samples (MTB-69 and MTB-73), successfully recovering 244 

sequence data from the former with a sequence depth of 8.5x (Figure 2B). We also 245 

attempted to sequence eight culture-negative smear-negative sputum samples, 246 

which were obtained from previously diagnosed patients (MTB-67-72 and MTB-74 -247 

76). Surprisingly, for two of these samples, MTB-68 and MTB-76, we obtained high 248 

quality M. tb sequence data with an average depth of coverage of 9x and 22x, 249 

respectively (Figure 2b). For five of the samples we detected low numbers of M.tb 250 

reads (<1x depth of coverage), which may represent a very low load or residual DNA 251 

from dead bacilli. No full length M. tb reads were detected in the final sample (MTB-252 

72).   253 

Concordance between genotypes obtained from culture and sputa matched pairs 254 

Using the high quality variable sites called we constructed a maximum likelihood 255 

phylogenetic tree. Six samples, with less than 90% genome and SNP position 256 

coverage, had an unusual phylogenetic positioning, close to nodes on the tree 257 

(Supplementary figure 4), a pattern consistent with a lack of informative sites. With 258 

these samples excluded, the resulting robust phylogeny revealed that for all of the 259 

matched pairs an identical or near-identical genome was obtained from culture and 260 

sputa (Supplementary figure 5).  261 

Concordance between resistance phenotype and genotype 262 

For the 24 matched pairs we sought to identify the genetic resistance determinants 263 

which could explain their antibiotic susceptibility profile. Predicted resistance 264 

mutations were 100% concordant between sequences obtained from culture and 265 

sputa (Table 1), with the exception of the low coverage samples (MTB-41, MTB-42, 266 
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MTB-43 and MTB-44) for which we were unable to confidently call variants at many 267 

of the targeted loci.  268 

The predicted resistance genotype agreed well with the phenotypic resistance 269 

profiles, with a possible resistance conferring mutation being detected in 88% 270 

(59/67) of phenotypically resistant cases, and no known resistance mutation in 94% 271 

(72/77) of sensitive cases. Two phenotypically pyrazinamide resistant cases 272 

(isolated from Patients 7 and 14) both belonging to the URAL lineage were identified 273 

as having a large chromosomal deletion (8.64kb) resulting in the removal of the pncA 274 

gene, the activator of the pro-drug pyrazinamide, plus ten surrounding genes 275 

(Supplementary figure 6).  276 

Four samples were phenotypically ethambutol sensitive but had a mutation in codon 277 

306 of the embB gene.  This mutation has been observed to cause both low and 278 

high level resistance to ethambutol, so may lead to a borderline phenotype (22, 23). 279 

Patient 15’s isolate was phenotypically ethambutol sensitive but had a Q497R 280 

mutation in the embB gene, which has previously been associated with being 281 

sensitive in both clinical isolates (24) and through the construction of isogenic 282 

mutants (25) so was discounted.  Similarly patient 2’s isolate was phenotypically 283 

sensitive to isoniazid, but had a G269S mutation in the kasA gene, which has also 284 

previously been found in sensitive isolates (26). Patient 5’s isolate was also 285 

phenotypically sensitive to rifampicin notwithstanding a L452P (codon 533 in E. coli) 286 

mutation in the rpoB gene.  This mutation  has also been associated with both high 287 

and low rifampicin resistance in the literature (27). M. tb isolated from this patient in 288 

the past had been found to be rifampicin resistant suggesting that either this 289 

mutation results in a borderline phenotype.  Alternatively, a mixture of rifampicin 290 

resistant and sensitive strains could have been present in this patient, although this 291 
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was not detected in the sequencing data obtained from either the sputum or culture. 292 

The remaining eight samples were phenotypically resistant, with an absence of any 293 

described or speculative causative genetic mutations. Five of these were 294 

phenotypically resistant to second-line drugs for which the genetic basis of 295 

resistance is less well understood. These discrepancies highlight that the current 296 

limitation on our ability to detect resistance via whole genome sequencing is not the 297 

detection itself, but rather lack of data on the genetic correlates of resistance. 298 

Any alleles detected at a low level (<10%), were excluded from this analysis due to 299 

the potential problem of carry-over on the sequencing platform which has been 300 

previously described (28).  Further work will be required to quantify the validity of 301 

these mutations, or to assess their clinical significance. In the majority of cases, 302 

resistance alleles had reached fixation or near-fixation in both culture and sputa 303 

samples, as they were found in 98-100% of the reads. In patient 10 however, 304 

significant heterozygosity was detected, with more than one allele being detected at 305 

greater than 10% at a single position.  A mixture of three different resistance alleles 306 

and one sensitive allele were detected within a single codon of the gyrA gene (Figure 307 

3). Remarkably almost identical proportions were detected in the corresponding 308 

culture sample.  309 

 310 

 311 

Discussion 312 

Whole genome sequencing of bacteria has been shown to provide comprehensive 313 

data on antimicrobial resistance, which could be used to inform antimicrobial 314 
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prescribing. However current methods which rely on culturing the organism prior to 315 

sequencing are slow and so of limited use in patient management. As a result initial 316 

antimicrobial prescribing for resistant M. tb, remains largely empirical in the early 317 

phase of treatment.  Currently MDR M. tb can be diagnosed rapidly on the Xpert 318 

MTB/RIF system, but a rapid test for extensively drug resistant (XDR) cases is 319 

unavailable. As Xpert (MTB/RIF) focuses only on rpoB (RIF) mutations unusual 320 

resistance patterns where strains are rifampicin sensitive but show other resistance, 321 

such as the isoniazid resistant, rifampicin sensitive case included in this study, are 322 

missed. Here, we describe the recovery and sequencing of near-complete genomes 323 

directly from 81% (21/26) of smear positive sputa, including those staining for low 324 

numbers (+1) of Acid Fast Bacilli (AFBs), within a timescale (up to 96 hours) that 325 

could allow personalised antimicrobial treatment for both sensitive and resistant 326 

cases, including XDR TB. 327 

M. tb is particularly appropriate for the use of diagnostic WGS with enrichment, as, 328 

unlike the majority of pathogenic organisms, M. tb has a well characterised clonal 329 

nature, with relatively low levels of sequence variation and does not undergo 330 

recombination or horizontal transfer (29), thus a stable set of oligonucleotide baits 331 

can be created and sequence data can be mapped against a reference genome. We 332 

have demonstrated that enrichment of M. tb provides sequencing data that matches 333 

the quality and quantity of data obtained via sequencing from culture. Moreover, we 334 

were able to recover high quality M. tb sequencing data from one smear-positive and 335 

one smear-negative case, both from cases who had received anti-TB therapy and 336 

which both failed to grow in culture. However without further clinical information it is 337 

difficult to interpret these cases. Smear-positive culture-negative cases are most 338 

commonly thought to be due to the on-going persistence of dead bacilli in sputum 339 
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samples (30). For this reason, previously treated cases are currently not 340 

recommended for use on PCR-based diagnostic systems such as Xpert, that cannot 341 

distinguish between dead or live bacilli.  Further investigation will be required to 342 

assess the suitability of targeted enrichment in the context of different clinical 343 

scenarios.  There were four smear-positive culture-positive cases where less optimal 344 

data were obtained from sputa, although we envisage that sequencing of such low 345 

titre samples could be improved through further optimization or increased 346 

sequencing depth. It is worth noting these samples were deemed failures based on 347 

commonly used SNP calling thresholds employed by others in the field. Further work 348 

will be required to robustly establish parameters that are sufficient for clinical use 349 

and interpretation, particularly when considering low frequency variants. 350 

Sequencing directly from the clinical sample may reduce any possible biases 351 

associated with culture. The overall presence of hetero-resistance in this study was 352 

low (one patient), with most resistance conferring mutations observed as close to 353 

fixation, i.e. the entire sampled population is resistant.  However, in endemic settings 354 

mixed infections have been observed to be much more prevalent especially in HIV 355 

positive patients (14, 31-33). The detection of these hetero-resistant cases is not 356 

only important for our understanding of how resistance evolves, but could impact on 357 

clinical management (34). Further studies are required to explore any bias on 358 

genetic diversity that may be introduced by culture, particularly in the context of 359 

mixed-strain infections. 360 

A disadvantage of the approach presented here is that it is relatively expensive: 361 

currently costing approximately $350 (USD) per sample in our laboratory. It also 362 

requires skills and machinery currently not available in most microbiological 363 

laboratories. An alternative and cheaper rapid sequence based approach would be 364 
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to deep sequence total DNA from sputa samples without enrichment.. A recent study 365 

found they could recover M. tb reads from eight smear and culture positive samples 366 

(35). However, in agreement with our study, they obtained a very low depth of 367 

coverage (<1x) in the absence of enrichment, so the usefulness of this approach is 368 

likely to be limited to detection, and is unlikely to provide the detailed genotype and 369 

resistance information that is presented here in a high-throughput manner.  370 

In summary, we have demonstrated whole M. tb genome sequencing directly from 371 

smear positive, culture positive sputa within a clinically relevant time frame that 372 

would enable pro-active patient management.  The quality of sequence data allowed 373 

us to accurately call mutations that are known to be associated with resistance to 374 

first and second line drugs. Furthermore, excluding the need for culture affords new 375 

opportunities for biological insights into the evolution of M. tb antimicrobial resistance 376 

and within-patient evolution. 377 

 378 

Figures 379 

Figure 1: Mean coverage and percentage of on target reads (OTR) when sequencing 380 

from sputum with and without enrichment for two samples 381 

Figure 2: (A) Depth of coverage obtained for smear positive samples from sputum 382 

and culture. (B) Depth of coverage for sputum sequence from smear positive 383 

samples which failed to grow. Level of smear positivity is shown, with the remaining 384 

being smear negative. 385 

Figure 3: Heteroresistance in gyrA in patient 10. R= resistant allele with suffix 386 

indicating codon position, S= absence of resistant allele. 387 
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Table 1: Resistance phenotype and genotype of matched pairs. R= a mutation exists 388 

at greater than 10%. Low R= mutation in codon 306 of embB gene which is thought 389 

to confer low level resistance to ethambutol. Rif = rifampicin, Inh= isoniazid, Emb = 390 

ethambutol, Pza = pyrazinamide, Str = streptomycin, Ofl= Ofloxacin 391 

(fluoroquinolones), Pas = para-Aminosalicylic acid, Amg = aminoglycosides, Thi = 392 

thionamides. 393 
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Patient Sputum positivity Sample Type Rif Inh Emb Pza Str* Ofl* Pas* Amg* Thi*

1 3+ Culture phenotype S S S S NA NA NA NA NA

MTB-27 Culture genotype

MTB-17 Sputum genotype

2 2+ Culture phenotype S S S S NA NA NA NA NA

MTB-28 Culture genotype R

MTB-18 Sputum genotype R

3 2+ Culture phenotype S S S S NA NA NA NA NA

MTB-29WE Culture genotype

MTB-19 Sputum genotype

4 3+ Culture phenotype R R R R R S S R (Kan) S

MTB-30WE Culture genotype R R Low R R R R

MTB-20 Sputum genotype R R Low R R R R

5 3+ Culture phenotype S R S R R R S R (Kan & Amk) R

MTB-31WE Culture genotype R R Low R R R R

MTB-21 Sputum genotype R R Low R R R R (Kan)

6 3+ Culture phenotype R R S R R R S R (Kan) R

MTB-32WE Culture genotype R R Low R R R R R R

MTB-22 Sputum genotype R R Low R R R R R R

7 3+ Culture phenotype R R R R R R R R (Cap) R

MTB-33WE Culture genotype R R R R R

MTB-23 Sputum genotype R R R R R

8 3+ Culture phenotype R R R R R R R S S

MTB-34WE Culture genotype R R Low R R R R

MTB-24 Sputum genotype R R Low R R R R

9 3+ Culture phenotype R R R NA R NA NA NA NA

MTB-35WE Culture genotype R R R R R

MTB-25 Sputum genotype R R R R R

10 3+ Culture phenotype R R R R R R S S S

MTB-36WE Culture genotype R R Low R R R R

MTB-26 Sputum genotype R R Low R R R R

11 2+ Culture phenotype S S S S NA NA NA NA NA

MTB-45 Culture genotype

MTB-37 Sputum genotype

12 3+ Culture phenotype S R S S NA NA NA NA NA

MTB-46 Culture genotype R

MTB-38 Sputum genotype R

13 1+ Culture phenotype R R R R R S S S S

MTB-47 Culture genotype R R R R R

MTB-39 Sputum genotype R R R R R

14 1+ Culture phenotype R R S R R R R S S

MTB-48 Culture genotype R R Low R R R

MTB-40 Sputum genotype R R Low R R R

15 5 AFB Culture phenotype R R S R R R NA S NA

MTB-49 Culture genotype R R R R R R

MTB-41 Sputum genotype

16 3+ Culture phenotype S R S S NA NA NA NA NA

MTB-50 Culture genotype R

MTB-42 Sputum genotype R

17 1+ Culture phenotype R R S S NA S NA S NA

MTB-51 Culture genotype R R Low R R

MTB-43 Sputum genotype

18 1+ Culture phenotype S S S S NA NA NA NA NA

MTB-52 Culture genotype R

MTB-44 Sputum genotype R

19 3+ Culture phenotype S S S S NA NA NA NA NA

MTB-60 Culture genotype R

MTB-53 Sputum genotype R

20 3+ Culture phenotype S S S S NA NA NA NA NA

MTB-61 Culture genotype

MTB-54 Sputum genotype

21 1+ Culture phenotype S S S S NA NA NA NA NA

MTB-63 Culture genotype

MTB-55 Sputum genotype

22 1+ Culture phenotype S S S S NA NA NA NA NA

MTB-64 Culture genotype

MTB-56 Sputum genotype

23 1+ Culture phenotype S S S S NA NA NA NA NA

MTB-65 Culture genotype

MTB-57 Sputum genotype

24 1+ Culture phenotype R R S S NA S NA S S

MTB-66 Culture genotype R R Low R R

MTB-59 Sputum genotype R R Low R R

Below level of detection

Below level of detection

Josie
Typewriter
Table 1



Supplementary table 1: Available details of samples sequenced in this study. 

 

 

Excel spreadsheet 

 

 

Supplementary Figure 1: Flow diagram for preparation of M. tb samples for 
enrichment based WGS from receipt of extracted genomic DNA to final data report.  
Times given are based on 16 samples processed manually or 96 samples processed 
using automation; Enrichment- we have seen comparable data from 16h vs 24h 
enrichment; MiSeq times are depending on MiSeq cartridge and chemistry used 
(2x75bp v3 run = ~16h, 2x300bp v3 run = ~68h) 

 

 

 

 

 

 



Supplementary Figure 2: Comparison of sequence results from culture with and 
without enrichment for two samples. 

 

 

Supplementary Figure 3: Coverage plot of enriched sputum sample MTB-40 
mapped against H37Rv. Maximum point on graph is 568.6 and minimum is 0. X axis 
indicates base position along the genome. Adapted from image generated using 
Artemis (Carver et. al. 2012 http://www.sanger.ac.uk/resources/software/artemis/). 
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Supplementary Figure 4: Maximum likelihood tree of all samples where at least 1x 
depth of coverage was obtained. Clade support is indicated by number of bootstrap 
replicates (out of 100). Scale bar represents substitutions per site. Some samples 
were identified as being on long branches or positioned close to nodes. Further 
investigation revealed that they all had at least 10% missing data in the SNP 
alignment, due to low coverage or heterozygosity, so could not be placed accurately 
on the tree. The samples indicated in red were removed from the final maximum 
likelihood tree shown in Supplementary Figure 3. 

 



Supplementary Figure 5: Maximum likelihood tree of 45 samples that had high 
coverage and could be accurately placed on the tree (see Supplementary Figure 2). 
Clade support is indicated by number of bootstrap replicates (out of 100). The tree 
was constructed using RAxML. Scale bar represents substitutions per site. 

 

 



Supplementary Figure 6: Deletion of pncA and surrounding genes identified in 
patient 7. Coverage plot is shown in grey. 

 

 

 

Supplementary table 2: Resistance genotypes identified in this study that passed 
all quality criteria and were found at greater than 10% frequency. The position of the 
mutation identified in column D refers to H37Rv (AL123456.3). Support on the 
forward, reverse and from individual nucelotides is shown. Any variants that didn’t 
match the observed phenotype were cross-references against the literature, and are 
discussed in the main text. 
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