19 research outputs found

    Trichome Lengths of the Heterocystous N\u3csub\u3e2\u3c/sub\u3e-Fixing Cyanobacteria in the Tropical Marginal Seas of the Western North Pacific

    Get PDF
    Calothrix rhizosoleniae and Richelia intracellularis are heterocystous cyanobacteria found in the tropical oceans. C. rhizosoleniae commonly live epiphytically on diatom genera Chaetoceros (C-C) and Bacteriastrum (B-C) while R. intracellularis live endosymbiotically within Rhizosolenia (R-R), Guinardia (G-R), and Hemiaulus (H-R); although, they occasionally live freely (FL-C and FL-R). Both species have much shorter trichomes than the other marine filamentous cyanobacteria such as Trichodesmium spp. and Anabaena gerdii. We investigated the trichome lengths of C. rhizosoleniae and R. intracellularis in the South China Sea (SCS) and the Philippine Sea (PS) between 2006 and 2014. On average, H-R had the shortest trichome lengths (3.5 cells/trichome), followed by B-C and C-C (4.9–5.2 cells/trichome) and FL-C (5.9 cells/trichome), and R-R, G-R, and FL-R had the longest trichome lengths (7.4–8.3 cells/trichome). Field results showed the trichome lengths of C-C and B-C did not vary seasonally or regionally. However, FL-C and H-R from the SCS and during the cool season had longer trichomes, where/when the ambient nutrient concentrations were higher. R-R, G-R, and FL-R also showed regional and seasonal variations in trichome length. Ultrastructural analysis found no gas vesicles within the C. rhizosoleniae cells to assist in buoyancy regulation. Results suggest that the trichome lengths of C. rhizosoleniae and R. intracellularis might be regulated by their diatom hosts’ symbiotic styles and by ambient nutrients. Short trichome length might help C. rhizosoleniae and R. intracellularis to stay in the euphotic zone regardless as to whether they are free-living or symbiotic

    The Effect of 3- 2-(Cyclopropylamino)Ethoxy Xanthone on Platelet Thromboxane Formation

    No full text
      Muscle, hemolymph and hepatopancreas transkerolase activities and their thiamin pyrophosphate (TPP) effects were assessed for their potential to determine the thiamin status of juvenile Penaeus monodon after a 9-week feeding trial. Transketolase activity increased in response to increasing thiamin supplementation, while TPP effects decreased with increasing dietary thiamin levels. The TPP effect showed a significant increment when the dietary thiamin was reduced from 20 mg/kg diet to no supplement. Thiamin requirement assessed by TPP effect as the criterion was lower than that by transketolase activity; the thiamin requirement estdimated by the TPP effect of the muscle (13.3 mg/kg) and hemolymph (18. 3mg/kg) was similar to that of the growth results (12.9 mg/km). These data suggest that, like vertebrates, measurement of the TPP effect in the tissues of the marine crustacean is a more sensitive indicator of thiamin status than measurement of transketolase activity. Among all criteria examined, the hemolymph TPP effect was most sensitive and specific indicator of thiamin status.# 0656

    Protective Effect of Siegesbeckia orientalis on Pancreatic β-Cells under High Glucose-Induced Glucotoxicity

    No full text
    The glucotoxicity caused by long-term exposure of β-cells to high glucose (HG) conditions may lead to the generation of more reactive oxygen species (ROS), reduce the activity of antioxidant enzymes, cause cell damage and apoptosis, and induce insulin secretion dysfunction. Siegesbeckia orientalis linne is a traditional folk herbal medicine used to treat snake bites, rheumatoid arthritis, allergies, and immune deficiencies. In this study, we evaluated the protective effect of S. orientalis ethanol extract (SOE) on cell death and oxidative stress in RIN-m5f pancreatic β-cells stimulated by two HG concentrations (50–100 mM). In the cell viability assay, SOE could significantly increase the survival rate of pancreatic β-cells under HG-induced conditions. For the oxidative stress induced by HG condition, the treatment of SOE effectively reduced the ROS formation, increased the content of intracellular glutathione, and up-regulated the expression of antioxidant enzymes, catalase, superoxide dismutase, and glutathione peroxidase. As a result, the SOE treatment could decrease the glucotoxicity-mediated oxidative damage on RIN-m5F β-cells. Moreover, SOE had the function of regulating insulin secretion in pancreatic β-cells under different HG-mediated conditions. It could decrease the increasing intracellular insulin secretion under the low glucose concentration to normal level; while increase the decreasing intracellular insulin secretion under the relatively high glucose concentration to normal level. Taken together, this study suggests that SOE has a protective effect on pancreatic β-cells under the HG-stimulated glucotoxic environment
    corecore