8 research outputs found

    A medium-resolution spectrum of the exoplanet HIP 65426 b

    No full text
    21 pages, 16 figures, 3 AppendixMedium-resolution integral-field spectrographs (IFS) coupled with adaptive-optics such as Keck/OSIRIS, VLT/MUSE, or SINFONI are appearing as a new avenue for enhancing the detection and characterization capabilities of young, gas giant exoplanets at large heliocentric distances (>5 au). We analyzed K-band VLT/SINFONI medium-resolution (R_lambda~5577) observations of the young giant exoplanet HIP 65426 b. Our dedicated IFS data analysis toolkit (TExTRIS) optimized the cube building, star registration, and allowed for the extraction of the planet spectrum. A Bayesian inference with the nested sampling algorithm coupled with the self-consistent forward atmospheric models BT-SETTL15 and Exo-REM using the ForMoSA tool yields Teff=1560 +/- 100K, log(g)20 au) by core-accretion. However, a formation by gravitational instability can not be ruled out. The metallicity is compatible with the bulk enrichment of massive Jovian planets from the Bern planet population models. Finally, we measure a radial velocity of 26 +/- 15km/s compatible with our revised measurement on the star. This is the fourth imaged exoplanet for which a radial velocity can be evaluated, illustrating the potential of such observations for assessing the coevolution of imaged systems belonging to star forming regions, such as HIP 65426

    A medium-resolution spectrum of the exoplanet HIP 65426 b

    No full text
    21 pages, 16 figures, 3 AppendixMedium-resolution integral-field spectrographs (IFS) coupled with adaptive-optics such as Keck/OSIRIS, VLT/MUSE, or SINFONI are appearing as a new avenue for enhancing the detection and characterization capabilities of young, gas giant exoplanets at large heliocentric distances (>5 au). We analyzed K-band VLT/SINFONI medium-resolution (R_lambda~5577) observations of the young giant exoplanet HIP 65426 b. Our dedicated IFS data analysis toolkit (TExTRIS) optimized the cube building, star registration, and allowed for the extraction of the planet spectrum. A Bayesian inference with the nested sampling algorithm coupled with the self-consistent forward atmospheric models BT-SETTL15 and Exo-REM using the ForMoSA tool yields Teff=1560 +/- 100K, log(g)20 au) by core-accretion. However, a formation by gravitational instability can not be ruled out. The metallicity is compatible with the bulk enrichment of massive Jovian planets from the Bern planet population models. Finally, we measure a radial velocity of 26 +/- 15km/s compatible with our revised measurement on the star. This is the fourth imaged exoplanet for which a radial velocity can be evaluated, illustrating the potential of such observations for assessing the coevolution of imaged systems belonging to star forming regions, such as HIP 65426

    Connecting SPHERE and CRIRES+ for the characterisation of young exoplanets at high spectral resolution: status update of VLT/HiRISE

    No full text
    International audienceNew generation exoplanet imagers on large ground-based telescopes are highly optimised for the detection of young giant exoplanets in the near-infrared, but they are intrinsically limited for their characterisation by the low spectral resolution of their integral field spectrographs (R < 100). High-dispersion spectroscopy at R 10 4 would be a powerful tool for the characterisation of these planets, but there is currently no high-resolution spectrograph with extreme adaptive optics and coronagraphy that would enable such characterisation. With project HiRISE we propose to use fiber coupling to combine the capabilities of two flagship instruments at the Very Large Telescope in Chile: the exoplanet imager SPHERE and the high-resolution spectrograph CRIRES+. The coupling will be implemented at the telescope in early 2023. We provide a general overview of the implementation of HiRISE, of its assembly, integration and testing (AIT) phase in Europe, and a brief assessment of its expected performance based on the final hardware
    corecore