36 research outputs found

    Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results

    Get PDF
    We present the first results from our Post-Newtonian (PN) Smoothed Particle Hydrodynamics (SPH) code, which has been used to study the coalescence of binary neutron star (NS) systems. The Lagrangian particle-based code incorporates consistently all lowest-order (1PN) relativistic effects, as well as gravitational radiation reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with and without 1PN effects, for NS with stiff equations of state, modeled as polytropes with Γ=3\Gamma=3. We find that 1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal is altered dramatically, showing strong modulation of the exponentially decaying waveform near the end of the merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor corrections onl

    Antinociceptive activity of furan-containing congeners of improgan and ranitidine

    No full text
    Furan-containing congeners of the histamine H(2) receptor antagonist ranitidine were synthesized and tested for improgan-like antinociceptive activity. The most potent ligand of the series, VUF5498, is the most potent improgan-like agent described to date (ED(50)= 25 nmol, icv). This compound is approximately equal in potency with morphine. These non-imidazole, improgan-like pain relievers further define the structural requirements for analgesics of this class and are important tools for ongoing mechanism-based studies

    Absence of antinociceptive tolerance to improgan, a cimetidine analog, in rats

    No full text
    Improgan, an analog of the histamine receptor antagonist cimetidine, produces highly effective analgesia following intraventricular injection. The present study examined changes in the antinociceptive effects of improgan following once daily intraventricular injections. Improgan (100-150 μg) produced near maximal antinociception 10 and 30 min after daily administration on all 4 test days, whereas comparable morphine treatments (50 μg) induced considerable tolerance. Thus, improgan produced highly effective analgesia without the development of tolerance
    corecore