39 research outputs found

    Controlling thermal reactivity with different colors of light

    Get PDF
    The ability to switch between thermally and photochemically activated reaction channels with an external stimulus constitutes a key frontier within the realm of chemical reaction control. Here, we demonstrate that the reactivity of triazolinediones, powerful coupling agents in biomedical and polymer research, can be effectively modulated by an external photonic field. Specifically, we show that their visible light-induced photopolymerization leads to a quantitative photodeactivation, thereby providing a well-defined off-switch of their thermal reactivity. Based on this photodeactivation, we pioneer a reaction manifold using light as a gate to switch between a UV-induced Diels-Alder reaction with photocaged dienes and a thermal addition reaction with alkenes. Critically, the modulation of the reactivity by light is reversible and the individually addressable reaction pathways can be repeatedly accessed. Our approach thus enables a step change in photochemically controlled reactivity, not only in small molecule ligations, yet importantly in controlled surface and photoresist design

    From sequence-defined macromolecules to macromolecular pin codes

    Get PDF
    Dynamic sequence-defined oligomers carrying a chemically written pin code are obtained through a strategy combining multicomponent reactions with the thermoreversible addition of 1,2,4-triazoline-3,5-diones (TADs) to indole substrates. The precision oligomers are specifically designed to be encrypted upon heating as a result of the random reshuffling of the TAD-indole covalent bonds within the backbone, thereby resulting in the scrambling of the encoded information. The encrypted pin code can eventually be decrypted following a second heating step that enables the macromolecular pin code to be deciphered using 1D electrospray ionization-mass spectrometry (ESI-MS). The herein introduced concept of encryption/decryption represents a key advancement compared with current strategies that typically use uncontrolled degradation to erase and tandem mass spectrometry (MS/MS) to analyze, decipher, and read-out chemically encrypted information. Additionally, the synthesized macromolecules are coated onto a high-value polymer material, which demonstrates their potential application as coded product tags for anti-counterfeiting purposes

    Triazolinediones as highly enabling synthetic tools

    Get PDF
    Triazolinediones (TADs) are unique reagents in organic synthesis that have also found wide applications in different research disciplines, in spite of their somewhat "exotic" reputation. In this review, we offer two case studies that demonstrate the possibilities of these versatile and reliable synthetic tools, namely, in the field of polymer science as well as in more recently emerging applications in the field of click chemistry. As the general use of triazolinediones has always been hampered by the limited commercial and synthetic availability of such reagents, we also offer a review of the available TAD reagents, together with a detailed discussion of their synthesis and reactivity. This review thus aims to serve as a practical guide for researchers that are interested in exploiting and further developing the exceptional click -like reactivity of triazolinediones in various applications

    The Power of Action Plots: Unveiling Reaction Selectivity of Light‐Stabilized Dynamic Covalent Chemistry

    Get PDF
    Exploiting the optimum wavelength of reactivity for efficient photochemical reactions has been well-established based on the development of photochemical action plots. We herein demonstrate the power of such action plots by a remarkable example of the wavelength-resolved photochemistry of two triazolinedione (TAD) substrates, i.e., aliphatic and aromatic substituted, that exhibit near identical absorption spectra yet possess vastly disparate photoreactivity. We present our findings in carefully recorded action plots, from which reaction selectivity is identified. The profound difference in photoreactivity is exploited by designing a ‘hybrid’ bisfunctional TAD molecule, enabling the formation of a dual-gated reaction manifold that demonstrates the exceptional and site-selective (photo)chemical behavior of both TAD substrates within a single small molecule

    Shining Light on Poly(ethylene glycol): From Polymer Modification to 3D Laser Printing of Water Erasable Microstructures

    Get PDF
    The implementation of stimuli‐responsive bonds into 3D network assemblies is a key concept to design adaptive materials that can reshape and degrade. Here, a straightforward but unique photoresist is introduced for the tailored fabrication of poly(ethylene glycol) (PEG) materials that can be readily erased by water, even without the need for acidic or basic additives. Specifically, a new class of photoresist is developed that operates through the backbone crosslinking of PEG when irradiated in the presence of a bivalent triazolinedione. Hence, macroscopic gels are obtained upon visible light‐emitting diode irradiation (λ > 515 nm) that are stable in organic media but rapidly degrade upon the addition of water. Photoinduced curing is also applicable to multiphoton laser lithography (λ > 700 nm), hence providing access to 3D printed microstructures that vanish when immersed in water at 37 °C. Materials with varying crosslinking densities are accessed by adapting the applied laser writing power, thereby allowing for tunable hydrolytic erasing timescales. A new platform technology is thus presented that enables the crosslinking and 3D laser printing of PEG‐based materials, which can be cleaved and erased in water, and additionally holds potential for the facile modification and backbone degradation of polyether‐containing materials in general

    Photocrosslinking of polyacrylamides using [2+2] photodimerisation of monothiomaleimides

    Get PDF
    The [2+2] photocycloaddition of monothiomaleimides (MTM) has been exploited for the photocrosslinking of polyacrylamides. Polymer scaffolds composed of dimethylacrylamide (DMA) and varying amounts of D,L-homocysteine thiolactone acrylamide(5, 10, and 20 mol%) were synthesised via free radical polymerisation (FRP), whereby the latent thiol-functionality was exploited to incorporate MTM motifs. Subsequent exposure to UV light (λ= 365 nm, 15 mWcm-2) triggered intermolecular crosslinking via the photodimerisation of MTM side chains, thus resulting in the formation of polyacrylamide gels. The polymer scaffolds were characterised using Fourier transform infrared spectroscopy (FT-IR), UV-Visible spectroscopy(UV-Vis), 1H NMR, and size exclusion chromatography(SEC), confirming the occurrence of the [2+2] photocycloaddition between the MTM moieties. The mechanical and physical properties of the resulting gels containing various MTM mol% were evaluated by rheology, compression testing, and swelling experiments. In addition, scanning electron microscopy (SEM) was used to characterise the xerogel morphology of5 and 10 mol% MTM hydro-and organo-gels. The macro-porous morphology obtained for the hydrogels was attributed to phase separation due to the difference insolubility of the PDMA modified with thiolactone side chains, provided that a more homogeneous morphology was obtained when the photo-gels were prepared in DMF as the solvent

    3D Printed Microstructures Erasable by Darkness

    Get PDF
    To advance the applications of direct laser writing (DLW), adaptability of the printed structure is critical, prompting a shift toward printing structures that are comprised of different materials, and/or can be partially or fully erased on demand. However, most structures that contain these features are often printed by complex processes or require harsh developing techniques. Herein, a unique photoresist for DLW is introduced that is capable of printing 3D microstructures that can be erased by exposure to darkness. Specifically, microstructures based on light-stabilized dynamic materials are fabricated that remain stable when continously irradiated with green light, but degrade once the light source is switched off. The degradation and light stabilization properties of the printed materials are analyzed in-depth by time-lapse scanning electron microscopy. It is demonstrated that these resists can be used to impart responsive behavior onto the printed structure, and –critically– as a temporary locking mechanism to control the release of moving structural features

    Aggregation-induced emission poly(meth)acrylates for photopatterning via wavelength-dependent visible-light-regulated controlled radical polymerization in batch and flow conditions

    Get PDF
    A robust wavelength-dependent visible-light-regulated reversible-deactivation radical polymerization protocol is first reported for the batch preparation of >20 aggregation-induced emission (AIE)-active polyacrylates and polymethacrylates. The resulting polymers possess narrow molar mass distributions (Đ ≈ 1.09–1.25) and high end-group fidelity at high monomer conversions (mostly >95%). This demonstrated control provides facile access to the in situ generation of complex sequence-defined tetrablock copolymers in one reactor, even while chain extending from less reactive monomers. Polymerizations can be successfully carried out under various irradiation conditions, including using UV, blue, green, and red LED light with more disperse polymers obtained at the longer, less energetic, wavelengths. We observe a red shift and wavelength dependence for the most efficient polymerization using LED illumination in a polymerization reaction. We find that the absorption of the copper(II) complex is not a reliable guide to reaction conditions. Moreover, the reported protocol is readily translated to a flow setup. The prepared AIE-active polymers are demonstrated to exhibit good photopatterning, making them promising materials for applications in advanced optoelectronic devices
    corecore