72 research outputs found

    Impacts of climate change and fruit tree expansion on key hydrological components at different spatial scales

    Get PDF
    Assessing how fruit tree expansion and climate variability affect hydrological components (e.g., water yield, surface runoff, underground runoff, soil water, evapotranspiration, and infiltration) at different spatial scales is crucial for the management and protection of watersheds, ecosystems, and engineering design. The Jiujushui watershed (259.32 km2), which experienced drastic forest changes over the past decades, was selected to explore the response mechanisms of hydrological components to fruit tree expansion and climate variability at different spatial scales (whole basin and subbasin scale). Specifically, we set up two change scenarios (average temperature increase of 0.5°C and fruit tree area expansion of 18.97%) in the SWAT model by analyzing historical data (1961∼2011). Results showed that climate change reduced water yield, surface runoff, and underground runoff by 6.75, 0.37, and 5.91 mm, respectively. By contrast, the expansion of fruit trees increased surface runoff and water yield by 2.81 and 4.10 mm, respectively, but decreased underground runoff by 1 mm. Interestingly, the sub-basins showed different intensities and directions of response under climate change and fruit tree expansion scenarios. However, the downstream response was overall more robust than the upstream response. These results suggest that there may be significant differences in the hydrological effects of climate change and fruit tree expansion at different spatial scales, thus any land disturbance measures should be carefully considered

    Insight of novel biomarkers for papillary thyroid carcinoma through multiomics

    Get PDF
    IntroductionThe overdiagnosing of papillary thyroid carcinoma (PTC) in China necessitates the development of an evidence-based diagnosis and prognosis strategy in line with precision medicine. A landscape of PTC in Chinese cohorts is needed to provide comprehensiveness.Methods6 paired PTC samples were employed for whole-exome sequencing, RNA sequencing, and data-dependent acquisition mass spectrum analysis. Weighted gene co-expression network analysis and protein-protein interactions networks were used to screen for hub genes. Moreover, we verified the hub genes' diagnostic and prognostic potential using online databases. Logistic regression was employed to construct a diagnostic model, and we evaluated its efficacy and specificity based on TCGA-THCA and GEO datasets.ResultsThe basic multiomics landscape of PTC among local patients were drawn. The similarities and differences were compared between the Chinese cohort and TCGA-THCA cohorts, including the identification of PNPLA5 as a driver gene in addition to BRAF mutation. Besides, we found 572 differentially expressed genes and 79 differentially expressed proteins. Through integrative analysis, we identified 17 hub genes for prognosis and diagnosis of PTC. Four of these genes, ABR, AHNAK2, GPX1, and TPO, were used to construct a diagnostic model with high accuracy, explicitly targeting PTC (AUC=0.969/0.959 in training/test sets).DiscussionMultiomics analysis of the Chinese cohort demonstrated significant distinctions compared to TCGA-THCA cohorts, highlighting the unique genetic characteristics of Chinese individuals with PTC. The novel biomarkers, holding potential for diagnosis and prognosis of PTC, were identified. Furthermore, these biomarkers provide a valuable tool for precise medicine, especially for immunotherapeutic or nanomedicine based cancer therapy

    Stability analysis of a k-out-of-N:G reparable system

    No full text
    A k-out-of-N:G reparable system with an arbitrarily distributed repair time is studied in this paper. We translate the system into an Abstract Cauchy Problem (ACP). Analysing the spectrum of the system operator helps us to prove the well-posedness and the asymptotic stability of the system

    Computational Scheme for the First-Order Linear Integro-Differential Equations Based on the Shifted Legendre Spectral Collocation Method

    No full text
    First-order linear Integro-Differential Equations (IDEs) has a major importance in modeling of some phenomena in sciences and engineering. The numerical solution for the first-order linear IDEs is usually obtained by the finite-differences methods. However, the convergence rate of the finite-differences method is limited by the order of the differences in L1 space. Therefore, how to design a computational scheme for the first-order linear IDEs with computational efficiency becomes an urgent problem to be solved. To this end, a polynomial approximation scheme based on the shifted Legendre spectral collocation method is proposed in this paper. First, we transform the first-order linear IDEs into an Cauchy problem for consideration. Second, by decomposing the system operator, we rewrite the Cauchy problem into a more general form for approximating. Then, by using the shifted Legendre spectral collocation method, we construct a computational scheme and write it into an abstract version. The convergence of the scheme is proven in the sense of L1-norm by employing Trotter-Kato theorem. At the end of this paper, we summarize the usage of the scheme into an algorithm and present some numerical examples to show the applications of the algorithm

    Dynamic Analysis of Software Systems with Aperiodic Impulse Rejuvenation

    No full text
    This paper aims to obtain the dynamical solution and instantaneous availability of software systems with aperiodic impulse rejuvenation. Firstly, we formulate the generic system with a group of coupled impulsive differential equations and transform it into an abstract Cauchy problem. Then we adopt a difference scheme and establish the convergence of this scheme by applying the Trotter–Kato theorem to obtain the system’s dynamical solution. Moreover, the instantaneous availability as an important evaluation index for software systems is derived, and its range is also estimated. At last, numerical examples are shown to illustrate the validity of theoretical results

    Stability analysis of a k

    No full text
    corecore