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Assessing how fruit tree expansion and climate variability affect hydrological

components (e.g., water yield, surface runoff, underground runoff, soil water,

evapotranspiration, and infiltration) at different spatial scales is crucial for the

management and protection of watersheds, ecosystems, and engineering design.

The Jiujushui watershed (259.32 km2), which experienced drastic forest changes over

the past decades, was selected to explore the response mechanisms of hydrological

components to fruit tree expansion and climate variability at different spatial scales

(whole basin and subbasin scale). Specifically, we set up two change scenarios

(average temperature increase of 0.5◦C and fruit tree area expansion of 18.97%) in the

SWAT model by analyzing historical data (1961∼2011). Results showed that climate

change reduced water yield, surface runoff, and underground runoff by 6.75, 0.37,

and 5.91 mm, respectively. By contrast, the expansion of fruit trees increased surface

runoff and water yield by 2.81 and 4.10 mm, respectively, but decreased underground

runoff by 1 mm. Interestingly, the sub-basins showed different intensities and

directions of response under climate change and fruit tree expansion scenarios.

However, the downstream response was overall more robust than the upstream

response. These results suggest that there may be significant differences in the

hydrological effects of climate change and fruit tree expansion at different spatial

scales, thus any land disturbance measures should be carefully considered.

KEYWORDS

SWAT model, different spatial scales, expansion of fruit trees, climate change, Jiujushui
watershed

1. Introduction

Two main factors influencing hydrological processes are climate change and land use/cover
change (LUCC) (Sherwood and Fu, 2014; Wang et al., 2014). According to the sixth report by
the government’s Intergovernmental Panel on Climate Change (IPCC), global temperatures have
continued to rise since the 1880s (Masson-Delmotte et al., 2021), with the rate accelerating over
the next 20 years. In addition, global warming will further change the spatial and temporal
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distribution patterns of rainfall, altering the annual frequency and
intensity of floods and increasing the risk of floods, droughts, and
other disasters.

Forests are crucial in mitigating climate change because they
act as carbon storehouses (Fearnside et al., 2000; Notaro et al.,
2013; Duveiller et al., 2018). However, forest cover change (e.g.,
deforestation, reforestation) have generated severe concerns and
debates on water supply, that is, forestation or deforestation can
either decrease or increase annual streamflow (Filoso et al., 2017;
Zhang et al., 2017; Wei et al., 2018; Sokolova et al., 2019; Holl
and Brancalion, 2020). Zhang and Wei (2021), through a global
survey, found that 60% of the afforested watershed had a 0.7–65.1%
reduction in annual runoff with a 0.7–100% forestation forest cover
gain, whereas 30% of the smallest watersheds had a 7–167.7% increase
in annual streamflow with a 12–100% forest cover gain (Zhang and
Wei, 2021). Sokolova et al. (2019), through long-term observations of
14 pair of moderate-size watersheds (around 250 acres) in the north-
west of the USA, found that after the falling down of a broadleaf
forest, the daily surface flow increased on average by 2–3 mm during
the first 5 years, and after cutting down coniferous forests, this
amount increases almost by threefold. On the contrary, in some forest
cover loss instances, the stream runoff failed to find definitive changes
(Scott, 1993; Stednick, 1996; Buttle and Metcalfe, 2000; Bart and
Hope, 2010; Zhang et al., 2017).

The widely documented literature review shows that previous
studies have mainly evaluated the effects of forest harvesting or
restoration (Croke et al., 1999; Mwangi et al., 2016), rarely with
attention to the conversion of different vegetation types. Considering
the gap between root uptake and canopy interception between
different vegetation types, vegetation type changes may be an essential
factor affecting hydrological processes (Duan et al., 2016; Hayati
et al., 2018). For example, replacing grassland and shrubland with
eucalyptus and pine forests in South Africa significantly reduced
annual runoff in the succeeding 3–6 years (Scott and Lesch, 1997;
Slingsby et al., 2021). In southern Brazil, planting natural forests
in the catchment had no significant effect on runoff in the first
2 years (Ferraz et al., 2021), while the planting of eucalyptus forests
significantly reduced runoff in the initial 2 years (Iroumé et al.,
2021). The Dong Nai River Basin in Vietnam converted natural
forests to coffee plantations, significantly increasing surface runoff
and reducing underground runoff (Truong et al., 2022).

In addition, previous studies have less focused on the hydrological
effects at different spatial scales. Theoretically, more heterogeneities
in the landscape, climate, geology, topography, and vegetation can
occur as watershed size increases, therefore leading to different
response mechanisms (Huff et al., 2000; Andréassian, 2004; Arrigo
and Salvucci, 2005; Kirchner, 2006; Crouzeilles and Curran, 2016).
Zhang et al. (2017) found that the response extent of annual runoff
to forest cover change declined with increasing watershed size in
large watersheds (≥ 1000 km2), but were statistically insignificant
for small watersheds (<1000 km2) (Zhang et al., 2017). Therefore,
it is problematic to extrapolate conclusions from one watershed to
another, which requires more cases to explore the hydrological effects
of forest cover change at different spatial scales.

The Jiujushui Watershed is located in the upper reaches of
Poyang Lake, covering an area of 259.3 km2. In the past few decades,
the rapid expansion of fruit tree areas in the watershed has raised
attention in the academic community. Fruit planting is a unique
afforestation practice generally considered to increase forest coverage
while gaining economic benefits. Previous studies have demonstrated

that fruit tree planting can significantly increase intra-annual runoff
fluctuations, surface runoff, and the risk of soil erosion (Xu et al.,
2019; Liu et al., 2020). However, the effects of fruit tree planting on
water resources at different spatial scales are rarely assessed, especially
in subtropical. To this end, this study established the SWAT model to
understand the responses of key hydrological components to climate
change and fruit tree expansion at different spatial scales.

The objectives of this study were as follows:

(1) To effectively simulate the hydrological effects of different
vegetation types conversions through the SWAT model.

(2) To determine the hydrological effects of climate change and
fruit tree expansion at different spatial scales by using SWAT to
conduct scenario simulations.

2. Research area and data collection

2.1. Research area

The Jiujushui watershed, which covers an area of about
259.3 km2, belongs to the humid subtropical monsoon zone, with
geographical coordinates of 116◦30′–116◦48′E and 26◦50′–27◦08′N
in the southeast of Jiangxi province, China (Figure 1). The watershed
is steep in the southeast and flat in northwest, with an average
elevation of 231 m and a slope between 0–25 degrees. The main
types of soil were Humic Acrisols (77.83%) and Cumulic Anthrosols
(19.37%). According to the Jiangxi Meteorological Bureau data, the
mean annual precipitation was 1742 mm between 1961 and 2011,
with 842.4 mm (48.36%) in the wet season from April to June and
212.2 mm (12.18%) in the dry season from September to November.
The mean annual temperature was 18.41◦C between 1961 and 2011.

2.2. Data source

2.2.1. Digital elevation map
The ASTER GDEM 30 M resolution digital elevation data from

the Geospatial Data Cloud were available for download.1

2.2.2. Soil data
Information on soil properties was taken from the 1:100,000

scale soil map of China provided by the World Soil Harmonization
Database (HSWD). The data were classified using the FAO-90
criteria, which can be directly applied to the SWAT model without
soil grain size conversion. According to the soil properties and
classification criteria, the soils in the study area can be roughly
divided into five parts: Cumulic Anthrosols (19.37%), Haplic Acrisols
(77.83%), Humic Acrisols 1 (0.60%), Humic Acrisols 2 (0.66%), and
Eutric Gleysol (1.53%) which soil structure is SL-L (Silty Loam-
Loam), SL-SCL (Sandy Loam-Sandy Clay Loam), C-C (Clay-Clay),
SCL-CL (Sandy Clay Loam-Clay Loam), L-CL (Loam-Clay Loam).

2.2.3. Land use data
In this study, we used the LUCC data from 1980 at a 30-m

resolution as the baseline L1 with ten types of land use: paddy field,

1 http://www.gscloud.cn/search
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FIGURE 1

Geographical location of the study site.

dry land, forest land, shrub land, sparse forest land, other woodlands,
high-density grassland, medium-density grassland, water area, and
urban and built-up area (Sourced from the Data Centre for Resource
and Environmental Sciences, Chinese Academy of Sciences).2

2.2.4. Meteorological data
Meteorological data were collected from the Jiangxi Provincial

Meteorological Bureau, which records daily rainfall, average
temperature, maximum temperature, minimum temperature, and
average wind speed between 1961 and 2011.

2.2.5. Runoff data
Daily runoff data were supplied by the Shuangtian Hydrological

Station of Jiangxi Provincial Hydrological Bureau (No. 62406200),
which was available from 1961 to 2011.

3. Materials and methods

3.1. M-K trend test

The Mann-Kendall (M-K) trend analysis method is a non-
parametric statistical method that can effectively distinguish whether
a natural process (e.g., rainfall, runoff, temperature, etc.) is a
natural fluctuation or an inevitable trend. Due to the simplicity
and effectiveness of the M-K, it has been widely used to examine

2 http://www.resdc.cn

hydrometeorological trends (Nyikadzino et al., 2020; Nguyen et al.,
2022). The statistical variable S was tested by using time series data X.

s =
n−1∑
k=1

n∑
j=k+1

sgn(xj−xk) (1)

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(2)

It is noted that the statistic S depends only on the level of the
observations instead of the value itself so that the statistic results
are unaffected by the actual distribution of the considered datasets
(Hamed, 2008). Assuming that sampled data are independently
distributed, we compared the normalized variance with the
standardized variable at the desired significance level to determine
Significant trends. The variance is expressed as:

Vas = (n(n− 1)(2n− 5))/18−
n∑

i=1

ti(ti−1)(2ti+5)/18 (3)

Zc=


s−1
√

vas(s) s > 0

0 s = 0
s+1
√

vas(s) s < 0
(4)

When the MK statistic |Zc|> Z1−a/2, the original hypothesis is
unacceptable at the confidence level. That is, it shows a clear upward
or downward trend in the time series data (with the statistic Zc > 0
representing an upward trend and vice versa) (Hisdal et al., 2001;
Karlsson et al., 2014).
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3.2. Sen slope

We applied the Sen slope method to estimate the variation
amplitude of the meteorological variable trend. The strength of this
method can effectively avoid the influence of missing values and
outliers by using the slope and intercepts median values of pairs of
points as judgment tools (Sen, 1968; Attaur and Dawood, 2016; Li
et al., 2022).

β = median
(xj − xi)
j− i

,∀j > i (5)

1 < j < i < n. In Eq. 5, x represents the median value of overall
combinations recorded in the entire dataset, where positive values
show an "up trend" and negative values show a "drop trend."

3.3. The SWAT model

In the early 1990s, the USDA’s Agricultural Research Service
(ARC) created the SWAT model, a semi-distributed hydrological
model of watersheds based on physical principles. It is used to
assess the effects of land use management and climate change
at the watershed scale on water transport, nutrients, pesticides,
and other materials (Arnold et al., 1998). Features data, such as
climate, topography, soils, and land use, into the SWAT model,
which subdivided the watershed into multiple hydrological response
units (HRU) with homogenous properties. The final runoff of the
watershed is calculated by applying the water balance equation to
each HRU. Due to its explicit physical foundation and detailed
description of hydrological processes, SWAT has been widely applied
worldwide (Wallace et al., 2018; Nkwasa et al., 2020).

The equation for water balance was as follows:

SWt = SW0 +

t∑
i=1

(Rday − Qsurf − Ea −Wseep − Qgw) (6)

Where SWt is the soil’s ultimate moisture content (mm), SW0 is the
initial moisture content (mm), Rday is the precipitation (mm), Qsurf
is the surface runoff (mm), Ea is the evapotranspiration (mm), Wseep
is the water flow to the unsaturated zone from the soil profile (mm),
and Qgw is the water flow the watershed from underground (mm).

3.4. Calibration and validation of the SWAT
model

Thirty-year’s time series from 1980 to 2009 were chosen as the
studied period to build daily scale SWAT models, dividing into the
warm-up period from 1980 to 1984, the calibration period from
1984 to 1996, and the validation period from 1997 to 2009. In this
study, we set up the SWAT-CUP procedure and applied LH-OAT
(Latin-hypercube one-factor-at-a time) approach and the sequential
uncertainty fitting (SUFI-2) program to calibrate the sensitivity
parameters (Xu et al., 2013; Abbaspour, 2015). T-stat and p-value
were used to determine the sensitivity of the parameters. The higher
the absolute value of the parameter t-stat is, the more sensitive it is,
and the smaller the p-value is, the more important it is. In this work,
we first calibrated the wide-range meaningful and high-sensitive
parameters, which captured most of the observation data within the
range of 95PPU. We then operated various iterations to decrease

the uncertainty of the parameters. After one iteration, we updated
the scope of the parameters for the next iteration until getting a
satisfactory result. Three indicators were selected for this study to
evaluate the performance of the model (Moriasi et al., 2007; Wang
et al., 2017; Yang et al., 2017), including the correlation coefficient
R2, the Nash–Sutcliffe efficiency coefficient NSE (Nash and Sutcliffe,
1970), and the percentage error (PBIAS) detailed in the following
equations:

R2
=

{ ∑n
i=1(Qobsi − Qobsave)(Qsimi − Qsimave)[∑n

i=1(Qobsi − Qobsave)2 ∑n
i=1(Qsimi − Qsimave)2

]1/2

} 2

(7)

NSE = 1−
[ ∑n

i=1(Qobsi − Qsimi)
2∑n

i=1(Qobsi − Qobsave)2

]
(8)

PBIAS =
[∑n

i=1(Qobsi − Qsimi) ∗ 100∑n
i=1 Qobsi

]
(9)

where Qobsi and Qsimi are the observed and simulated values,
respectively, Qobsave and Qsimave are the observed and simulated
averages, respectively, n is the length of the time series. The SWAT
model simulation can be judged as “satisfactory” if the NSE > 0.5 and
PBIAS≤± 25 for a month time step (Moriasi et al., 2007). Details are
shown in Table 1.

3.5. Separation of impacts of land use
cover and climate change

For convenience in separating the effects of land use/cover and
climate change on hydrological processes, it has been common to
treat both as being independent of each other in previous studies
(Yin et al., 2017), which ignores the interaction and causes the
contribution of both not to equal 100% in total. To this end, we
followed Yang et al. (2017) to reach a more accurate separation of
the contributions of climate and land-use factors to key hydrological
components (Figure 2).

Due to different cover conditions, there are some differences in
the hydrological effect of the same climate change. Therefore, in this
study, hydrological impacts 1QC1 and 1QC2 were calculated under
different land use conditions. The arithmetic average of 1QC1 and
1QC2 represents the separate impacts of climate change.

1QC =
1
2
(1QC1 +1QC2) =

1
2
[
(QL1

C2 − QL1
C1)+ (QL2

C2 − QL2
C1)
]

(10)
Likewise, the arithmetic mean represents the individual effects of land
use change on hydrological components (1QL).

1QL =
1
2
(1QL1 +1QL2) =

1
2
[
(QL2

C1 − QL1
C1)+ (QL2

C2 − QL1
C2)
]
(11)

Differences in observed hydrological components between the
baseline and impact recording periods may also be used to evaluate
the changes:

1Q = 1QL +1QC = QL2
C2 − QL1

C1 (12)

Where the overall change in the hydrological process and the
hydrological components may be used to calculate statistical mean
values throughout yearly and monthly time frames.
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TABLE 1 SWAT simulation performance evaluation on table.

Performance R2 NSE PBIAS (%)

Very good 0.70 < R2
≤ 1.00 0.75 < NSE ≤ 1.00 PBIAS <± 10

Good 0.60 < R2
≤ 0.70 0.65 < NSE ≤ 0.75 ± 10 ≤ PBIAS ≤±15

Satisfactory 0.50 < R2
≤ 0.60 0.50 < NSE ≤ 0.65 ± 15 ≤ PBIAS ≤±25

Unsatisfactory R2
≤ 0.50 NSE ≤ 0.50 PBIAS >± 25

FIGURE 2

A diagram showing how climate change (A) and changes in how land is used (B) affect hydrological processes. C1 and C2 represent different climatic
conditions, L1 and L2 represent different land use types. A, B, C, D represent the values of hydrological components (water yield, evapotranspiration, etc.)
under the conditions of QL1

C1, QL2
C1, QL2

C2, QL1
C2 respectively.

3.6. Scenario settings

3.6.1. Fruit tree expansion scenario
The study area is located in the Jiujushui watershed of Nanfeng

County, Fuzhou City, Jiangxi Province, where China has emphasized
and taken measures for the planting and producing citrus since 1978.
Based on the records from 1987 to 2003, the area of fruit forests
expanded dramatically, with the plantation area increasing from 4.10
to 173.15 km2 (Figure 3).

This study lacked historical image data of fruit tree planting
in this basin, so the scale and direction of fruit tree expansion
were assumed in the study. This study assumes that under baseline
conditions (L1 1980s), the future priority is given to converting all
of the low-value lands (e.g., dryland, grassland, shrub land, other
woodland) to fruit forests, while other land use types (e.g., paddy
field, forest land, urban and construction land) remain unchanged.
Thus, a fruit tree expansion scenario (L2) was constructed, as shown
in Table 2 and Figure 4.

3.6.2 Climate change scenarios
Three hydrometeorological elements, including annual average

rainfall, runoff, and temperature, were analyzed using the Theil–Sen
estimator for the past 51 years, from 1961 to 2011. Precipitation
displayed a slight downward trend over the last 51 years, with
a climatic tendency of −0.79 mm/10a, which was not significant
(P> 0.1). Runoff showed an increasing trend with a climatic tendency
of 15.4 mm/10a, which was not significant (P > 0.1). The average
temperature exhibited a significant increasing trend with a climatic
tendency of 0.1◦C/10 a (P < 0.01) (Figure 5).

In addition, the MK test at the monthly scale showed that runoff
was only significant in September (P < 0.1). The average temperature
was significant in April (P < 0.1), February and June (P < 0.05;

Figure 6 andTable 3). In summary, our study constructed an increase
in the average temperature of 0.5◦C and maintain rainfall as future
climate conditions C2.

In this study, 1980–2009 was selected as the study period
to establish the SWAT model. The baseline (L1) and fruit tree
expansion periods (L2) were taken as two periods of land use
patterns, whereas pre-change climatic conditions (C1) and post-
change climatic conditions (C2) were taken as two climatic patterns.
We obtained four scenarios by combining the above four patterns, as
detailed in Table 4.

1. S1 (L1 land use and C1 climatic conditions).
2. S2 (L2 land use and C1 climatic conditions).
3. S3 (L1 land use and C2 climatic conditions).
4. S4 (L2 land use and C2 climatic conditions).

4. Results

4.1. Model performance

The daily scale SWAT model established that the simulation
of runoff by the model had distinct overestimations and
underestimations at peak locations (Figure 7). The simulated
and measured values were mainly concentrated around the 1:1
line by comparing each point (Figure 8). In the calibration period,
SWAT model’s correlation coefficient R2, NSE, and percentage
error (PBIAS) were 0.64, 0.64, and −4.3%. These values were 0.65,
0.65, and −0.58% in the validation period (Table 5). According to
the evaluation standard of Moriasi et al. (2007) for hydrological
models, this study established SWAT models in a reasonable range.
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FIGURE 3

Planting area of fruit tree in Nanfeng County from 1987 to 2003.

TABLE 2 Land use type conversion from the baseline period to fruit tree expansion.

Land-use Base_line Fruit tree expansion Change

Type Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Paddy_field 56.30 21.72% 56.3 21.72% 0 0.00%

Dry_land 13.34 5.15% 0 0.00% −13.34 −5.15%

Forest 152.41 58.79% 152.41 58.79% 0 0.00%

Shrubland 7.74 2.99% 0 0.00% −7.74 −2.99%

Sparse_wood 22.50 8.68% 0 0.00% −22.5 −8.68%

Other_woodland 0.14 0.05% 0 0.00% −0.14 −0.05%

Hight_density_pasture 5.24 2.02% 0 0.00% −5.24 −2.02%

Medium_density_pasture 0.22 0.08% 0 0.00% −0.22 −0.08%

Water 0.02 0.01% 0.02 0.01% 0 0.00%

Urban_and_bulit-up 1.33 0.51% 1.33 0.51% 0 0.00%

fruit tree 0 0 49.18 18.97% 49.18 18.97%

Therefore, it still well reflected the hydrological relationship between
rainfall and runoff in the watershed, which can be used to simulate
hydrological processes in our study area. Optimal parameters, model
parameter ranges, and parameter sensitivity rankings are shown in
Table 6.

4.2. Effects of climate change and fruit
tree expansion on key hydrological
components at the whole basin scale

4.2.1. Impact of climate change on key
hydrological components

The effects of climate change on key hydrological components
were separated using Equations 10–12. As shown in Figure 9
compared with the baseline period (S1), the change in climatic
factors (average temperature increased by 0.5◦C) reduced water yield,
surface runoff, underground runoff, infiltration, and soil water by
6.75, 0.37, 5.91, 6.01, and 0.04 mm, respectively, and increased
evapotranspiration by 6.41 mm.

4.2.2. Effects of fruit tree expansion on key
hydrological components

Similarly, the impact of fruit tree expansion on hydrological
processes was separated. Based on Figure 9, compared with the
baseline period (S1), fruit tree expansion increased water yield,
surface runoff, and soil water by 2.81, 4.10, and 0.35 mm, respectively,
while decreased evapotranspiration, underground runoff, and
infiltration by 2.79, 1, and 1.06 mm, respectively.

4.3. Impacts of climate change and fruit
tree expansion on key hydrological
components at the sub-basin scale

4.3.1. Impact of climate change on key
hydrological components

In our research, the SWAT model was divided into 13 sub-
basins and 322 hydrological response units according to the
characteristics of the basin. A response intensity distribution map
of key hydrological components to climate change at the sub-basin
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FIGURE 4

(A) Baseline period, (B) land use during fruit tree expansion, (C) slope of the study area, (D) land use transfer from baseline to fruit tree expansion.
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FIGURE 6

Mann-Kendall (M-K) test results of monthly rainfall, runoff and temperature.

TABLE 3 Mann-Kendall (M-K) test results of hydrometeorological elements.

Month Precipitation Temperature Runoff

Test Z Sig β Test Z Sig β Test Z Sig β

January 1.02 0.49 0.15 0.00 1.02 0.14

February 0.70 0.26 2.38 b 0.06 0.45 0.09

March 0.57 0.58 0.57 0.01 1.15 0.34

April −0.57 −0.40 1.76 0.03 −0.15 −0.10

May −1.57 −2.13 0.74 0.01 −0.37 −0.37

June −0.28 −0.53 2.16 b 0.02 0.03 0.05

July 0.75 0.90 0.57 0.01 0.30 0.15

August 0.99 0.62 −1.51 −0.01 1.51 0.51

September 0.55 0.24 0.17 0.00 1.74 a 0.44

October −1.18 −0.55 1.20 0.01 −0.81 −0.16

November 0.38 0.17 1.37 0.02 0.37 0.09

December −0.54 −0.11 0.95 0.01 0.50 0.06

In the table, positive values represent an increase while negative ones imply decrease. A significant difference between groups at the 0.1 level (a) and the 0.05 level (b).

scale was drawn through the previous (10–12) formulae, combined
with the GIS and output results of SWAT models (Figure 10).
The response direction (increase or decrease) of key hydrological
components to climate change at the sub-basin scale was consistent
with the response direction of the whole basin scale, but the response

intensity between sub-basins differed. Overall, the response of the key
hydrological components downstream was stronger than upstream.
Compared with the baseline period (S1), climate change reduced
water yield, surface runoff, underground runoff, infiltration, and
soil water by 6.42–6.53, 0.34–0.36, 5.60–5.79, 5.66–5.85, and 0.003–
0.04 mm, respectively, and increased evapotranspiration by 6.10–
6.20 mm upstream (sub-basins 9, 11, and 12), but downstream
(sub-basins 5, 6, and 8), water yield, surface runoff, underground
runoff, infiltration, and soil water decreased by 7.16–7.55, 0.10–0.32,
6.47–7.06, 6.21–7.18, and 0.03–0.06 mm, respectively, and increased
evapotranspiration by 6.58–7.53 mm.

TABLE 4 Different scenarios under SWAT simulation.

Scenarios Climate LUCC P (mm) Tv (◦C)

S1 C1 L1 1761 18.47

S2 C1 L2 1761 18.47

S3 C2 L1 1761 18.97

S4 C2 L2 1761 18.97

4.3.2. Effects of fruit tree expansion on key
hydrological components

Similarly, we mapped the response intensity of the key
hydrological components to fruit tree expansion on the sub-basin
scale (Figure 11), showing that each sub-basin also exhibited
different response intensities to fruit tree expansion and that the
response direction (increasing or decreasing) of the key hydrological
components was different from the response direction at the whole
basin scale. Overall, (1) the response of the key hydrological
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The Shuangtian hydrological station’s calibration period (A) and validation period (B) time series of simulated and observed data.
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Scatter graphs of the observed and simulated data at (A) calibration and (B) validation.

TABLE 5 Evaluation of the Jiujushui watershed’s SWAT model’s accuracy
and reliability during calibration and validation.

Period R NSE

Daily Daily PBIAS

Calibration (1984–1996) 0.64 0.64 −4.30%

Validation (1997–2009) 0.65 0.66 −0.58%

components downstream was more robust than that upstream.
Compared with the baseline period (S1), fruit tree expansion reduced
water yield, underground runoff, infiltration, and soil water by

1.01–1.16, 4.24–6.13, 4.46–6.43, and 0.05–0.16 mm, respectively,
and increased evapotranspiration and surface runoff by 0.97–1.15
and 4.10–6.55 mm, respectively, upstream (sub-basins 9 and 12).
However, downstream (sub-basins 5 and 8), water yield, surface
runoff, underground runoff, infiltration, and soil water increased by
12.86–21.99, 7.49–13.77, 5.30–7.67, 5.64–8.11, and 1.51–2.53 mm,
respectively, while evapotranspiration decreased by 12.87–22 mm. (2)
The hydrological components’ response directions in the sub-basins
differed from the whole basin scale. Upstream (sub-basins 9 and 12),
surface runoff, underground runoff, and infiltration had a consistent
response direction with the whole basin, but water yield, soil water,
and evapotranspiration had the opposite response direction with the
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TABLE 6 Best parameters and their sensitivity ranking.

Parameter name Fitted value Min value Max value t-stat p-value

1 v__CH_K2.rte 267.36 0 500 15.06 0

2 r__CN2.mgt −0.19 −0.2 0.2 −10.93 0

3 r__SOL_K().sol −0.24 −0.8 0.8 2.53 0.01

4 r__SOL_AWC().sol −0.17 −0.5 0.5 1.94 0.05

5 v__ALPHA_BF.gw 0.87 0 1 1.6 0.11

6 v__EPCO.hru 0.23 0 1 −1.06 0.29

7 v__ESCO.bsn 0.61 0 1 −0.98 0.33

8 r__HRU_SLP.hru −0.3 −0.5 0.5 0.39 0.69

9 r__GWQMN.gw −0.17 −0.5 0.5 −0.39 0.7

10 v__GW_DELAY.gw 101.9 0 500 −0.18 0.85

FIGURE 9

Contribution of (A) climate change and (B) LUCC to key hydrological components. SURQ represents surface runoff, GW represents underground runoff,
SW represents soil moisture, YIELD represents water yield, PERC represents infiltration; ET represents evapotranspiration.

whole basin. Downstream (sub-basins 5 and 8), water yield, surface
runoff, soil water, and evapotranspiration had a consistent response
direction with the whole basin. However, underground runoff and
infiltration had the opposite response direction with the whole basin.

5. Discussion

At the whole basin scale, the response of water yield and
evapotranspiration to climate change (average temperature increase
of 0.5◦C) in the humid area investigated in this study was as follows:
compared with the baseline period (S1), water yield decreased by
0.61%, and evapotranspiration increased by 1.06%. The magnitude
of the water yield response was similar to that reported by Chen
et al. (2022), with a 0.58% reduction in water yield for a temperature
increase of 1◦C in the Maoershan basin of Guangxi in the humid
region. In contrast, the magnitude of the water yield was significantly
smaller than that of Shi et al. (2016), with a 2.59% reduction in water
yield for a temperature increase of 1◦C in the Luan River basin, in the
semi-humid zone, and Zhang et al. (2013), with a 12% reduction in
water yield for a temperature increase of 1◦C upstream of the Jing
River, in the arid region. In addition, the magnitude of the effect
of a temperature increase of 1◦C on the evapotranspiration in the
Maoershan basin in the humid region, in the Luan River basin in

the semi-humid region, and the upstream Jing River in the arid zone
showed increases in 1.65, 0.65, and 1.5%, respectively. In summary,
the increase in temperature will lead to a decrease in water yield and
an increase in evapotranspiration, and the magnitude of change is
quite different from that in different climate zones.

Across the watershed (whole basin), the primary conversion
pattern was shrubland and sparse-wood (natural forest) covering a
fruit tree (artificial forest) (61.49%) in our study, which may reduce
the leaf area index, causing evapotranspiration to weaken (Yang
et al., 2014; Truong et al., 2022). In addition, the expansion of
fruit trees in this study led to increased surface runoff and reduced
underground runoff and infiltration in the watershed (whole basin),
due to ground disturbances (e.g., land preparation, removing litterfall
or vegetation) in planting fruit trees. Those disturbances not only
reduced the roughness of the ground surface but also destroyed
the forest understorey’s water retention capacity, resulting in more
rainfall being directly converted into surface runoff (Schellekens et al.,
2007; Pathak et al., 2013; Huang et al., 2015). To our surprise, each
sub-basin has different vegetation conversion patterns, resulting in
inconsistent hydrological effects among the sub-basins. For example,
the main vegetable converting patterns of cropland to the fruit tree
in the downstream (such as sub-basins 5 and 8), which led to an
increase in water yield by 12.86–21.99 mm, which is consistent with
Wang et al. (2017) study of the hydrological effects of converting
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FIGURE 10

Response intensity distribution of key hydrological components to climate change at subbasin scale. (A) Evapotranspiration; (B) soil water; (C) infiltration;
(D) surface runoff; (E) underground runoff; (F) water yield.

TABLE 7 Elevation, slope and percentage area of fruit tree planted in each sub-basin.

Sub-basin Elevation (m) Slope (◦) Percentage of fruit tree planting area (%)

Min Max Mean Min Max Mean

1 29 268 143 0 48 8.42 11.00%

2 101 258 165 0 32 6.47 6.00%

3 129 373 185 0 41 6.15 19.00%

4 84 234 140 0 30 5.32 32.00%

5 110 193 143 0 20 4.70 24.00%

6 127 263 164 0 21 4.60 10.00%

7 135 567 226 0 52 8.91 5.00%

8 102 209 142 0 21 4.95 44.00%

9 135 869 303 0 65 11.91 26.00%

10 115 824 264 0 59 11.14 11.00%

11 105 316 176 0 42 7.18 23.00%

12 135 803 318 0 71 14.14 19.00%

13 123 891 323 0 56 13.47 23.00%

cropland to the forest. In the upstream (sub-basins 9 and 12), there
were multiple vegetation type conversions (e.g., grassland to fruit
forest and natural to fruit forest). Therefore, to some extent, multiple
vegetation types are converted to produce a mutual offsetting effect
so that the final effect is weakened or inversed (Rodriguez et al.,

2010; Lu et al., 2016). The hydrological effects of each sub-basin are
superimposed to constitute the hydrological effects of the watershed
(whole basin). Therefore, the difference in the hydrological effect of
different sub-basins may eventually weaken the hydrological effect of
the whole basin.
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FIGURE 11

Response intensity distribution of key hydrological components to land use change at subbasin scale. (A) Evapotranspiration; (B) soil water;
(C) infiltration; (D) surface runoff; (E) Underground runoff; (F) water yield.

Watersheds can buffer changes caused by disturbances (e.g.,
changes in vegetation type) (Zhang and Wei, 2012). A hypothetical
threshold of disturbance level must exist below which the impacts
of disturbance on hydrology may not be significant. The terrain,
vegetation, geology, and climate of a watershed all play a role
in determining the threshold. For example, in the Appalachian
Mountains of the United States, the mean annual runoff changed
significantly with only a 10% reduction in forest cover (Swank et al.,
1988), while in the Central United States, a 50% harvest might be
required for a significant change in mean annual runoff (Stednick,
1996). Downstream of this study area, the percentage change in
vegetation area (fruit forest) in sub-basins 5 and 8 was 24 and 44%,
respectively, which were mainly from cropland to fruit forest, and the
relatively significant change in vegetation area may explain the more
robust response in basins 5 and 8 (Table 7).

Kirkby et al. found that steeper slopes generally had thinner
soils. Therefore, vegetation became sparer so that the plant and
litter interception also tended to decrease with slope resulting in
the decrease of water retention ability (Kirkby et al., 2002). In
addition, steep slopes reinforced the drainage performance of the
watershed (Beven and Kirkby, 1993; Bull et al., 2000). In this study,
the upstream slope (sub-basins 9 and 12, 11.91◦ ≤ slope ≤ 14.14◦)
was significantly steeper than the downstream (sub-basins 5

and 8, 4.70◦ ≤ slope ≤ 4.95◦), which means that the upstream
had a higher runoff velocity and lower water retention capacity
than the downstream. So that under the fruit tree expansion
scenario, runoff continues to accumulate downstream at the expense
of upstream losses, eventually leading to a significant increase
in downstream water yield, surface runoff, and underground
runoff (Table 7). Similarly, under the climate change scenario,
downstream (sub-basins 5, 6, and 8) changes were more
significant than upstream (sub-basins 9, 11, and 12). However,
it is interesting to note that surface runoff presents a different
response intensity than the other hydrological components. The
main reason can be attributed to the flat slope and lower terrain
conditions in the downstream, which allows more groundwater to
supplementary to the surface runoff to compensate for evaporation
loss (Fu et al., 2022).

6. Uncertainty of the results of this
study

The uncertainty of the model is mainly caused by the limitations
of the model algorithm and parameters, as it is challenging to
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evaluate the hydrological impact of climate and land-use change in
large watersheds. In this study, the SWAT model performed well.
However, it is presumed that changes in hydrological components
were influenced only by land use change and climate change due
to uncertainty in the model’s description of the interaction of both.
These changes alone drove the effect, and with both together, they
drove the cumulative sums slightly differently. Although the method
of Yang et al. (2017) was used to eliminate the cumulative sum of
climate and land use changes, which was not 100%, this reduced
uncertainty to some extent but did not eliminate it. In addition,
the meteorological data used in this study were obtained by spatial
interpolation of multiple meteorological stations around the basin
through Anusplin software. The basin center was used as the basin
meteorological station. Under these conditions, the expression of
spatial precipitation variability was poor, resulting in uncertainty in
the runoff simulation results. Furthermore, this study obtained data
that were not sufficiently precise, and high-precision data were a key
factor in reducing model uncertainty (Masih et al., 2011; Pierini et al.,
2014; Qiao et al., 2015; Shope and Maharjan, 2015). Also, this study
did not consider the coupling effects between warming and wind
speed, precipitation, and other meteorological factors, which may
increase some uncertainties (Trenberth, 2011; Wu et al., 2016).

7. Conclusion

In our study, the SWAT hydrological model was set up to
explore the effects of climate change and fruit tree expansion
on key hydrological components (water yield, surface runoff,
underground runoff, soil water, evapotranspiration, and infiltration)
in the Jiujushui watershed at different scales by combining historical
meteorological data, measured flow data, land use data and soil data.
This finding shows that the effects of fruit tree expansion and climate
change on hydrological components had different magnitudes and
response characteristics at different watershed scale. Hence, land
use change patterns in the forested watershed should be carefully
considered (especially the expansion of fruit trees in our study area),
which may cause a series of knock-on effects that ultimately increase
the risk to water resources (e.g., a surge in water yield downstream in
our research). These results indicate that it is not accurate to evaluate
the hydrological effects of forest and climate change only by focusing
on the changes in the watershed outlet.
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