160 research outputs found

    Epitaxial hetero-structure of CdSe/TiO2 nanotube arrays with PEDOT as hole transfer layer for photoelectrochemical hydrogen evolution

    Get PDF
    The photocatalytic decomposition of water is believed to be able to help mitigate the crisis of fossil fuel depletion. However, the photocatalytic hydrogen production remains challenge to obtain high and stable photoconversion efficiency. Here we report an epitaxial hetero-structure of CdSe/TiO2 nanotube arrays as efficient photo-anodes via simple room-temperature, low-cost electrochemical deposition. With the help of the similar d spacing with TiO2, CdSe sensitization layer is epitaxially grown on the tube wall of the TiO2 nanotubes, resulting in an ideal coherent grain boundary and single crystal growth. The resultant photo-anode produces 30% more photocurrent than those samples without coherent grain boundary. Notably, the especial epitaxial hetero-structure is beneficial to decrease the recombination site and accelerate the separation of photogenerated electron-hole pairs. Furthermore, an ultrathin PEDOT surface layer was developed on the epitaxial hetero-structure of CdSe/TiO2 nano-tube arrays in which it functions as both a physical passivation barrier and a hole transfer layer. As a result, significantly enhanced photocurrent density and substantially better stability have been achieved. This methodology may be providing a new pathway of epitaxial growth for preparing the heterogeneous junction materials which have similar d spacing

    The effect of substrate on TiO2 thin films deposited by atomic layer deposition (ALD)

    Get PDF
    "ALD is a precision growth technique that can deposit either amorphous or polycrystalline thin films on a variety of substrates. The difference in substrate can cause a variation in the ALD process, even it is carried out using the same reactants and deposition conditions [1]. TiO2 thin films were grown using TTIP (Titanium isopropoxide) ALD on silicon wafers, glass slides, and stainless steel plates in order to study the effect of substrates on the growth of TiO2 with 3,000 deposition cycles, at 300oC.The thin films were analyzed using Xray Diffraction (XRD), Raman Spectroscopy, Atomic Force Microscope (AFM) and Spectroscopic Ellipsometer. The XRD analysis indicates that the main diffraction peak of (101) (2_= 25.3) could be indexed to anatase TiO2, regardless the types of substrates. The results show that crystalline TiO2 thin films could be grown easily on a crystal substrate rather than on an amorphous substrate.

    Surface defects repairing of sprayed Ca-P coating by the microwave-hydrothermal method

    Get PDF
    The increasing interest in decreasing the surface defects of sprayed Ca-P coating deposited on carbon/carbon (C/C) composites to enhance the bonding strength, bioactivity and corrosion resistance of the coating is justified by the growing evidence of its beneficial effect on the bone replacement fields. Microwave-hydrothermal (MH) method detailed in the previous study is successfully used to reduce the above coating defects and the MH mechanism is well studied here. Hence, five different treatment reagents involving calcium and phosphorus solution, sulfuric acid (H2SO4) solution, ammonium hydroxide (NH3·H2O) solution, only Ca2+ solution and deionized water are selected as the precursor solution. The surface, cross-sectional morphologies, phase and composition of the coatings are characterized by the scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) spectra. Elastic modulus and coating hardness are measured by nanoindentation. Results reveal that the presence of calcium and phosphorus ions, as well as the H2SO4 in the precursor solution during the MH process, have a positive influence on the reduction of sprayed Ca-P coating surface defects. However, the coating treated by other three solutions cannot produce new phases on the basis of sprayed Ca-P coating and the surface defects of it are not decreased. Nevertheless, the elastic modulus and hardness of the coating treated by H2SO4 solution are very weak. MH treated coating by calcium and phosphorus ions in the precursor solution and in NH3·H2O solution, only Ca2+ solution and deionized water own the similar elastic modulus and hardness to that of the sprayed Ca-P coating. To conclude, in the MH process, the surface defects of the sprayed Ca-P coating are only lowered in calcium and phosphorus precursor solution and the coating strength is not dropped, which demonstrates the promoting mechanism of MH process

    Faradaic processes beyond Nernst’s law: density functional theory assisted modelling of partial electron delocalisation and pseudocapacitance in graphene oxides

    Get PDF
    The study of electron delocalisation in oxygen atom segregated zones in graphene, aided by the first-principles density functional theory, has revealed extra energy bands of ≥ 2 eV wide around the Fermi level, predicting faradaic charge storage occurring in a wide range of potentials, which disagrees with Nernst’s Law but accounts well for the so called pseudocapacitance of heteroatommodified graphene based electrode materials in supercapacitors

    Yb3+ doping effects on thermal conductivity and thermal expansion of Yttrium aluminium garnet

    Get PDF
    Yttrium Aluminium Garnet (YAG) is an attractive candidate as thermal barrier material used for turbine blade in aero engines, due to its relatively low thermal conductivity, low oxygen diffusivity and good phase stability at high temperature. YAG has a complex crystal structure, in which Y3+ ions locate in dodecahedron and Al3+ ions in octahedron and tetrahedron. Replacing the host cations with rare earth elements can cause the structure change which influences the thermal properties of YAG. Because the space inside the octahedron is relatively small, Yb3+ ions which have the smallest ionic radial size in the lanthanide series, have been selected and attempted to be doped on dodecahedral and octahedral sites to investigate the effects on thermal conductivity and thermal expansion. The variation of lattice constant indicates that Yb3+ ions are located on the dodecahedron or octahedron. In addition, when Yb3+ ions replace Al3+ ions on octahedral sites, the thermal conductivity at room temperature is dramatically reduced and the coefficient of thermal expansion is over 10×10−6 K−1 at high temperature, which results from the expansion of octahedron due to the much larger radius of Yb3+ ion compared with the host cation (Al3+ ion). On the contrary, replacing Y3+ ions with Yb3+ ions in dodecahedron, the thermal conductivity also gradually reduces to the similar value but the coefficient of thermal expansion is getting smaller, due to the relatively small ionic radius of Yb3+ causing the contraction of the dodecahedron. Therefore, a dopant with much larger radius would be preferred in both dodecahedron and octahedron to significant reduce thermal conductivity as well as increase coefficient of thermal expansion of YAG, by introducing large radial difference between the dopant and the host cations

    Energy saving strategy for the development of icephobic coatings and surfaces

    Get PDF
    Aircraft are frequently exposed to cold environments and ice accumulation on aircraft surface may lead to catastrophic accidents. An effective solution of ice protection is a critical requirement in the aerospace industry. For the research and development of icephobic coatings, the current coating design target mainly focuses on lowering the ice adhesion strength between the ice and the surface. However, as a passive ice protection approach, the use of icephobic coating often has to be combined with an active ice protection solution (e.g. electro-thermal heating, hot air bleeding, and vibration, etc.), especially for the in-flight application where the reliability of ice protection must be ensured. Therefore, ice adhesion strength is no longer the sole criterion to evaluate the icephobic performance of a coating or a surface. It is a need to establish a more practical strategy for the design of icephobic coatings and surface. In this work, an energy saving strategy is proposed to assess the de-icing performance of the icephobic coating and surface when active heating is involved. The energy consumed for the de-icing operation assisted by the ice gravity is used as the key criterion for the overall performance of icephobic coating and surface. Successful validation has been achieved for evaluating the de-icing performance of selected coatings and surfaces, which demonstrates an alternative strategy for the design and practical application of icephobic coatings and surfaces in ice protection

    Interdependence of Surface Roughness on Icephobic Performance: A Review

    Get PDF
    Ice protection techniques have attracted significant interest, notably in aerospace and wind energy applications. However, the current solutions are mostly costly and inconvenient due to energy-intensive and environmental concerns. One of the appealing strategies is the use of passive icephobicity, in the form of coatings, which is induced by means of several material strategies, such as hydrophobicity, surface texturing, surface elasticity, and the physical infusion of ice-depressing liquids, etc. In this review, surface-roughness-related icephobicity is critically discussed to understand the challenges and the role of roughness, especially on superhydrophobic surfaces. Surface roughness as an intrinsic, independent surface property for anti-icing and de-icing performance is also debated, and their interdependence is explained using the related physical mechanisms and thermodynamics of ice nucleation. Furthermore, the role of surface roughness in the case of elastomeric or low-modulus polymeric coatings, which typically instigate an easy release of ice, is examined. In addition to material-centric approaches, the influence of surface roughness in de-icing evaluation is also explored, and a comparative assessment is conducted to understand the testing sensitivity to various surface characteristics. This review exemplifies that surface roughness plays a crucial role in incorporating and maintaining icephobic performance and is intrinsically interlinked with other surface-induced icephobicity strategies, including superhydrophobicity and elastomeric surfaces. Furthermore, the de-icing evaluation methods also appear to be roughness sensitive in a certain range, indicating a dominant role of mechanically interlocked ice

    Fabrication of highly hydrophobic two-component thermosetting polyurethane surfaces with silica nanoparticles

    Get PDF
    Highly hydrophobic thermosetting polyurethane (TSU) surfaces with micro-nano hierarchical structures were developed by a simple process combined with sandpaper templates and nano-silica embellishment. Sandpapers with grit sizes varying from 240 to 7000 grit were used to obtain micro-scale roughness on an intrinsic hydrophilic TSU surface. The surface wettability was investigated by contact angle measurement. It was found that the largest contact angle of the TSU surface without nanoparticles at 102 ± 3 ° was obtained when the template was 240-grit sandpaper and the molding progress started after 45 min curing of TSU. Silica nanoparticles modified with polydimethylsiloxane were scattered onto the surfaces of both the polymer and the template to construct the desirable nanostructures. The influences of the morphology, surface composition and the silica content on the TSU surface wettability were studied by scanning electron microscopy (SEM), attenuated total reflection (ATR) infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The surface of the TSU/SiO2 nanocomposites containing 4 wt% silica nanoparticles exhibited a distinctive dual-scale structure and excellent hydrophobicity with the contact angle above 150°. The mechanism of wettability was also discussed by Wenzel model and Cassie-Baxter model

    HfB2-SiC-MoSi2 oxidation resistance coating fabricated through in-situ synthesis for SiC coated C/C composites

    Get PDF
    A brand new HfB2-SiC-MoSi2 coating was fabricated to protect carbon/carbon (C/C) composites with inner SiC coating from oxidation, which was prepared by in-situ synthesis. In this paper, the C/C substrate with the protection of the HfB2-SiC-MoSi2/SiC coating could resist oxidation in 1773 K air for 408 h. The double coating also presented expected oxidation protection performance at dynamic oxidation environment. In the test process, the surface coating was oxidized to form a self-sealing silicate glass layer containing HfO2 and HfSiO4, which could hinder crack propagation in coating
    • …
    corecore