136 research outputs found

    Syllables and phonemes as planning units in Mandarin Chinese spoken word production:Evidence from ERPs

    Get PDF
    Speakers of different languages might rely on differential phonological units when planning spoken output. In the present experiment, we investigated the role of phonemes, as well as the relative time course of syllabic vs phonemic encoding, in Mandarin Chinese word production. A form preparation task was combined with encephalography (EEG). In Experiment 1, word-initial phonemic overlap was manipulated; in Experiment 2, overlap was either in terms of phonemes or of syllables. Priming in latencies was found for syllabic but not for phonemic overlap. Phonemic overlap modulated ERPs in a 230-300 ms time window (range across Experiment 1 and 2) whereas syllabic overlap was found in a 200-280 ms time window. These results show that both phonemes and syllables are important planning units for Chinese speakers, and the relatively similar time course of activation provides important constraints on psycholinguistic models of Chinese spoken production. (143 words

    Structureā€Independent Conductance of Thiopheneā€Based Singleā€Stacking Junctions

    Get PDF
    The experimental investigation of intermolecular charge transport in pi-conjugated materials is challenging. Herein, we describe the investigation of charge transport through intermolecular and intramolecular paths in single-molecule and single-stacking thiophene junctions by the mechanically controllable break junction (MCBJ) technique. We found that the ability for intermolecular charge transport through different single-stacking junctions was approximately independent of the molecular structure, which contrasts with the strong length dependence of conductance in single-molecule junctions with the same building blocks, and the dominant charge-transport path of molecules with two anchors transited from an intramolecular to an intermolecular path when the degree of conjugation increased. An increase in conjugation further led to higher binding probability owing to the variation in binding energies, as supported by DFT calculations

    Responses of community traits and soil characteristics of Achnatherum inebrians-type degraded grassland to grazing systems in alpine meadows on the Qinghai-Tibet Plateau

    Get PDF
    IntroductionScientific grazing management is of great significance for the ecological health and sustainable use of alpine meadows.MethodsTo explore appropriate management methods of alpine grasslands of the Qinghai-Tibet Plateau degraded by Achnatherum inebrians (Hance) Keng ex Tzvele presence, we studied the effects of different grazing systems on the A. inebrians population, grassland vegetation community traits, soil characteristics and soil microbial community structure for cold- season grazing plus supplementary feeding pasture (CSF) and four-season open public pasture (FOP) in Tianzhu County, Gansu Province.ResultsCompared with FOP, the CSF site showed significantly inhibited reproduction of A. inebrians, especially the crown width, seed yield and number of reproductive branches per plant were as high as 50%, significantly increased the aboveground biomass of edible forage and soil water content by 57% and 43ā€“55%, better soil nutrients, and significantly reduced soil bulk density by 10ā€“ 29%. Different grazing systems affected the composition and diversity of soil microbial communities, with a greater effect on fungi than on bacterial flora. The most abundant phyla of bacteria and fungi were Proteobacteria and Ascomycota for CSF (by 30ā€“38% and 24ā€“28%) and for FOP (by 67ā€“70% and 68ā€“73%), and the relative abundance and species of bacterial and fungal genera were greater for CSF than FOP. The Ī±-diversity indexes of fungi were improved, and the Ī²-diversity of fungi was significant difference between CSF and FOP. However, the grazing utilization time was prolonged in FOP, which reduced the diversity and abundance of soil bacteria and increased soil spatial heterogeneity. The use of A. inebrians-type degraded grassland in the cold season, and as a winter supplementary feeding and resting ground, could effectively inhibit expansion of A. inebrians, promote edible forage growth, enhance grassland productivity and community stability, and improve soil structure. DiscussionThe results guide healthy and sustainable utilization of A. inebrians-type degraded grassland in the Qinghai-Tibet Plateau

    Simulation of carbon peaking process of high energy consuming manufacturing industry in Shaanxi Province: A hybrid model based on LMDI and TentSSA-ENN

    Get PDF
    To achieve the goals of carbon peaking and carbon neutrality in Shaanxi, the high energy consuming manufacturing industry (HMI), as an important contributor, is a key link and important channel for energy conservation. In this paper, the logarithmic mean Divisia index (LMDI) method is applied to determine the driving factors of carbon emissions from the aspects of economy, energy and society, and the contribution of these factors was analyzed. Meanwhile, the improved sparrow search algorithm is used to optimize Elman neural network (ENN) to construct a new hybrid prediction model. Finally, three different development scenarios are designed using scenario analysis method to explore the potential of HMI in Shaanxi Province to achieve carbon peak in the future. The results show that: (1) The biggest promoting factor is industrial structure, and the biggest inhibiting factor is energy intensity among the drivers of carbon emissions, which are analyzed effectively in HMI using the LMDI method. (2) Compared with other neural network models, the proposed hybrid prediction model has higher accuracy and better stability in predicting industrial carbon emissions, it is more suitable for simulating the carbon peaking process of HMI. (3) Only in the coordinated development scenario, the HMI in Shaanxi is likely to achieve the carbon peak in 2030, and the carbon emission curve of the other two scenarios has not reached the peak. Then, according to the results of scenario analysis, specific and evaluable suggestions on carbon emission reduction for HMI in Shaanxi are put forward, such as optimizing energy and industrial structure and making full use of innovative resources of Shaanxi characteristic units

    Phase-Coherent Charge Transport through a Porphyrin Nanoribbon

    Get PDF
    Quantum interference in nano-electronic devices could lead to reduced-energy computing and efficient thermoelectric energy harvesting. When devices are shrunk down to the molecular level it is still unclear to what extent electron transmission is phase coherent, as molecules usually act as scattering centres, without the possibility of showing particle-wave duality. Here we show electron transmission remains phase coherent in molecular porphyrin nanoribbons, synthesized with perfectly defined geometry, connected to graphene electrodes. The device acts as a graphene Fabry-P\'erot interferometer, allowing direct probing of the transport mechanisms throughout several regimes, including the Kondo one. Electrostatic gating allows measurement of the molecular conductance in multiple molecular oxidation states, demonstrating a thousand-fold increase of the current by interference, and unravelling molecular and graphene transport pathways. These results demonstrate a platform for the use of interferometric effects in single-molecule junctions, opening up new avenues for studying quantum coherence in molecular electronic and spintronic devices.Comment: 14 pages, 3 figure

    Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction

    Get PDF
    Two-dimensional van der Waals heterostructures (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdW heterojunctions (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction (XPBJ) technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created, and that cross-plane charge transport can be tuned by incorporating guest molecules. More importantly, the M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport

    Subthalamic nucleus dynamics track microlesion effect in Parkinsonā€™s disease

    Get PDF
    Parkinsonā€™s Disease (PD) is characterized by the temporary alleviation of motor symptoms following electrode implantation (or nucleus destruction), known as the microlesion effect (MLE). Electrophysiological studies have explored different PD stages, but understanding electrophysiological characteristics during the MLE period remains unclear. The objective was to examine the characteristics of local field potential (LFP) signals in the subthalamic nucleus (STN) during the hyperacute period following implantation (within 2Ā days) and 1Ā month post-implantation. 15 patients diagnosed with PD were enrolled in this observational study, with seven simultaneous recordings of bilateral STN-LFP signals using wireless sensing technology from an implantable pulse generator. Recordings were made in both on and off medication states over 1Ā month after implantation. We used a method to parameterize the neuronal power spectrum to separate periodic oscillatory and aperiodic components effectively. Our results showed that beta power exhibited a significant increase in the off medication state 1Ā month after implantation, compared to the postoperative hyperacute period. Notably, this elevation was effectively attenuated by levodopa administration. Furthermore, both the exponents and offsets displayed a decrease at 1Ā month postoperatively when compared to the hyperacute postoperative period. Remarkably, levodopa medication exerted a modulatory effect on these aperiodic parameters, restoring them back to levels observed during the hyperacute period. Our findings suggest that both periodic and aperiodic components partially capture distinct electrophysiological characteristics during the MLE. It is crucial to adequately evaluate such discrepancies when exploring the mechanisms of MLE and optimizing adaptive stimulus protocols

    Single-Atom Control of Single-Molecule van der Waals Junctions with Semimetallic Transition Metal Dichalcogenide Electrodes

    Get PDF
    Electrodes play an essential role in controlling electrode-molecule coupling. However, conventional metal electrodes require linkers to anchor the molecule. Van der Waals interaction offers a versatile strategy to connect the electrode and molecule without anchor groups. Except for graphene, the potential of other materials as electrodes to fabricate van der Waals molecular junctions remains unexplored. Herein, we utilize semimetallic transition metal dichalcogenides (TMDCs) 1T'-WTe as electrodes to fabricate WTe /metalated tetraphenylporphyrin (M-TPP)/WTe junctions via van der Waals interaction. Compared with chemically bonded Au/M-TPP/Au junctions, the conductance of these M-TPP van der Waals molecular junctions is enhanced by āˆ¼736%. More importantly, WTe /M-TPP/WTe junctions exhibit the tunable conductance from 10 to 10 (1.15 orders of magnitude) via single-atom control, recording the widest tunable range of conductance for M-TPP molecular junctions. Our work demonstrates the potential of two-dimensional TMDCs for constructing highly tunable and conductive molecular devices

    Charge transport through single-molecule bilayer-graphene junctions with atomic thickness

    Get PDF
    The van der Waals interactions (vdW) between the Ļ€-conjugated molecules offer new opportunities for fabricating the heterojunction-based devices and investigating charge transport in heterojunctions with atomic thickness. In this work, we fabricate sandwiched single-molecule bilayer-graphene junctions via vdW interactions and characterize their electrical transport properties by employing the cross-plane break junction (XPBJ) technique. Experimental results show that the cross-plane charge transport through single-molecule junctions is determined by the size and layer number of molecular graphene in these junctions. Density functional theory (DFT) calculations reveal that the charge transport through the molecular graphene in these molecular junctions is sensitive to the angles between the graphene flake and peripheral mesityl groups, and those rotated groups can be used to tune the electrical conductance. This study provides new insight into cross-plane charge transport in atomically thin junctions and highlights the role of through-space interactions in vdW heterojunctions at the molecular scale

    Solvent-molecule interaction induced gating of charge transport through single-molecule junctions

    Get PDF
    To explore solvent gating of single-molecule electrical conductance due to solvent-molecule interactions, charge transport through single-molecule junctions with different anchoring groups in various solvent environments was measured by using the mechanically controllable break junction technique. We found that the conductance of single-molecule junctions can be tuned by nearly an order of magnitude by varying the polarity of solvent. Furthermore, gating efficiency due to solventā€“molecule interactions was found to be dependent on the choice of the anchor group. Theoretical calculations revealed that the polar solvent shifted the molecular-orbital energies, based on the coupling strength of the anchor groups. For weakly coupled molecular junctions, the polar solventā€“molecule interaction was observed to reduce the energy gap between the molecular orbital and the Fermi level of the electrode and shifted the molecular orbitals. This resulted in a more significant gating effect than that of the strongly coupled molecules. This study suggested that solventā€“molecule interaction can significantly affect the charge transport through single-molecule junctions
    • ā€¦
    corecore