71 research outputs found

    Acidochromic organic photovoltaic integrated device

    Get PDF
    Tremendous efforts have been devoted to boosting the power conversion efficiency (PCE) of organic solar cells (OSCs) via the introduction of cathode interlayers (CILs). However, CIL materials have limited diversity and the development of multifunctional devices is largely neglected. Herein, an acidochromic organic photovoltaic integrated device is firstly proposed by introducing an acid-sensitive stimulating-reaction organic molecule as both the CIL of OSCs and the sensor of monitoring environmental acidity. The oxazolidine unit of acidochromic molecule can form a ring-opening structure after acid treatment, resulting in the remarkable color change with the direct reflection of pH value of ecological environment. The additive-free PM6:Y6 OSCs using the acidochromic molecule as the CIL achieve an excellent PCE of above 15.29 %, which is 47 % higher than that of the control device. The PCE can even maintain above 92 % after treating CIL with various strong acids (pH = 1). Moreover, the color of acidified films and the degraded performance of acidified OSCs can be easily restored by alkaline treatment. The successful application of CIL in other highly efficient photovoltaic systems proves its good universality. This work triggers the promising application of acidochromic molecules in solar cells as CIL with the additional function of recognition of acid environment

    13.4 % Efficiency from All-Small-Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions

    Get PDF
    How to simultaneously achieve both high open-circuit voltage (Voc) and high short-circuit current density (Jsc) is a big challenge for realising high power conversion efficiency (PCE) in all-small-molecule organic solar cells (all-SM OSCs). Herein, a novel small molecule (SM)-donor, namely FYSM−SiCl, with trialkylsilyl and chlorine substitutions was designed and synthesized. Compared to the original SM-donor FYSM−H, FYSM−Si with trialkylsilyl substitution showed a decreased crystallinity and lower highest occupied molecular orbital (HOMO) level, while FYSM−SiCl had an improved crystallinity, more ordered packing arrangement, significantly lower HOMO level, and predominant “face-on” orientation. Matched with a SM-acceptor Y6, the FYSM−SiCl-based all-SM OSCs exhibited both high Voc of 0.85 V and high Jsc of 23.7 mA cm−2, which is rare for all-SM OSCs and could be attributed to the low HOMO level of FYSM−SiCl donor and the delicate balance between high crystallinity and suitable blend morphology. As a result, FYSM−SiCl achieved a high PCE of 13.4 % in all-SM OSCs, which was much higher than those of the FYSM−H- (10.9 %) and FYSM−Si-based devices (12.2 %). This work demonstrated a promising method for the design of efficient SM-donors by a side-chain engineering strategy via the introduction of trialkylsilyl and chlorine substitutions

    10.13% Efficiency All-Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors

    Get PDF
    The limited light absorption capacity for most polymer acceptors hinders the improvement of the power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs). Herein, by simultaneously increasing the conjugation of the acceptor unit and enhancing the electron-donating ability of the donor unit, a novel narrow-bandgap polymer acceptor PF3-DTCO based on an A–D–A-structured acceptor unit ITIC16 and a carbon–oxygen (C–O)-bridged donor unit DTCO is developed. The extended conjugation of the acceptor units from IDIC16 to ITIC16 results in a red-shifted absorption spectrum and improved absorption coefficient without significant reduction of the lowest unoccupied molecular orbital energy level. Moreover, in addition to further broadening the absorption spectrum by the enhanced intramolecular charge transfer effect, the introduction of C–O bridges into the donor unit improves the absorption coefficient and electron mobility, as well as optimizes the morphology and molecular order of active layers. As a result, the PF3-DTCO achieves a higher PCE of 10.13% with a higher short-circuit current density (Jsc) of 15.75 mA cm−2 in all-PSCs compared with its original polymer acceptor PF2-DTC (PCE = 8.95% and Jsc = 13.82 mA cm−2). Herein, a promising method is provided to construct high-performance polymer acceptors with excellent optical absorption for efficient all-PSCs

    Thick Electrodes of a Self-Assembled MXene Hydrogel Composite for High-Rate Energy Storage

    No full text
    Supercapacitors based on two-dimensional MXene (Ti3C2Tz) have shown extraordinary performance in ultrathin electrodes with low mass loading, but usually there is a significant reduction in high-rate performance as the thickness increases, caused by increasing ion diffusion limitation. Further limitations include restacking of the nanosheets, which makes it challenging to realize the full potential of these electrode materials. Herein, we demonstrate the design of a vertically aligned MXene hydrogel composite, achieved by thermal-assisted self-assembled gelation, for high-rate energy storage. The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties, and its vertical ion channel structure facilitates rapid ion transport. The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance, stability, and high-rate capability for up to 300 mu m thick electrodes, which represents a significant step toward practical applications.Funding Agencies|National Natural Science Foundation of China [61774077, G20200019046]; Jiangxi Provincial Natural Science Foundation [20224BAB214022]; SSF Synergy Program [EM16-0004]; Swedish Energy Agency [EM 42033-1]; Knut and Alice Wallenberg (KAW) Foundation [KAW2020.0033]; Youth Projects of Joint Fund of~Basic and Applied Basic Research Fund of Guangdong Province [2020A1515110738]; Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province [2019B1515120073]; Guangzhou Key laboratory of Vacuum Coating Technologies and New Energy Materials Open Projects Fund [52103212]; High-End Foreign Experts Project; [KFVE20200006]</p

    Synthesis of Group II-VI Semiconductor Nanocrystals via Phosphine Free Method and Their Application in Solution Processed Photovoltaic Devices

    No full text
    Solution-processed CdTe semiconductor nanocrystals (NCs) have exhibited astonishing potential in fabricating low-cost, low materials consumption and highly efficient photovoltaic devices. However, most of the conventional CdTe NCs reported are synthesized through high temperature microemulsion method with high toxic trioctylphosphine tellurite (TOP-Te) or tributylphosphine tellurite (TBP-Te) as tellurium precursor. These hazardous substances used in the fabrication process of CdTe NCs are drawing them back from further application. Herein, we report a phosphine-free method for synthesizing group II-VI semiconductor NCs with alkyl amine and alkyl acid as ligands. Based on various characterizations like UV-vis absorption (UV), transmission electron microscope (TEM), and X-ray diffraction (XRD), among others, the properties of the as-synthesized CdS, CdSe, and CdTe NCs are determined. High-quality semiconductor NCs with easily controlled size and morphology could be fabricated through this phosphine-free method. To further investigate its potential to industrial application, NCs solar cells with device configuration of ITO/ZnO/CdSe/CdTe/Au and ITO/ZnO/CdS/CdTe/Au are fabricated based on NCs synthesized by this method. By optimizing the device fabrication conditions, the champion device exhibited power conversion efficiency (PCE) of 2.28%. This research paves the way for industrial production of low-cost and environmentally friendly NCs photovoltaic devices

    Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer

    No full text
    In this paper, a Mg-doped ZnO (MZO) thin film is prepared by a simple solution process under ambient conditions and is used as the window layer for PbS solar cells due to a wide n-type bandgap. Moreover, a thin layer of ZnO nanocrystals (NCs) was deposited on the MZO to reduce carrier recombination at the interface for inverted PbS quantum dot solar cells with the configuration Indium Tin Oxides (ITO)/MZO/ZnO NC (w/o)/PbS/Au. The effect of film thickness and annealing temperature of MZO and ZnO NC on the performance of PbS quantum dot solar cells was investigated in detail. It was found that without the ZnO NC thin layer, the highest power conversion efficiency(PCE) of 5.52% was obtained in the case of a device with an MZO thickness of 50 nm. When a thin layer of ZnO NC was introduced between MZO and PbS quantum dot film, the PCE of the champion device was greatly improved to 7.06% due to the decreased interface recombination. The usage of the MZO buffer layer along with the ZnO NC interface passivation technique is expected to further improve the performance of quantum dot solar cells

    Photoluminescence Enhancement for Efficient Mixed-Halide Blue Perovskite Light-Emitting Diodes

    No full text
    The development of highly efficient blue perovskite light-emitting diodes (PeLEDs) remains a big challenge, requiring more fundamental investigations. In this work, significant photoluminescence enhancement in mixed halide blue perovskite films is demonstrated by using a molecule, benzylphosphonic acid, which eventually doubles the external quantum efficiency to 6.3% in sky-blue PeLEDs. The photoluminescence enhancement is achieved by forming an oxide-bonded perovskite surface at grain boundaries and suppressing electron-phonon interaction, which enhances the radiative recombination rate and reduces the nonradiative recombination rate, respectively. Moreover, severe thermal quenching is observed in the blue perovskite films, which can be explained by a two-step mechanism involving exciton dissociation and electron-phonon interaction. The results suggest that enhancing the radiative recombination rate and reducing the electron-phonon interaction-induced nonradiative recombination rate are crucial for achieving blue perovskite films with strong emission at or above room temperature.Funding Agencies|Swedish Energy Agency Energimyndigheten [48758-1]; China Postdoctoral Science Foundation [2020M673055]; NSFC [61774077]; Research and Development Program in Key Areas of Guangdong Province [2019B1515120073, 2019B090921002, 2019B010132004]; [895679]</p

    Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer

    No full text
    In this paper, a Mg-doped ZnO (MZO) thin film is prepared by a simple solution process under ambient conditions and is used as the window layer for PbS solar cells due to a wide n-type bandgap. Moreover, a thin layer of ZnO nanocrystals (NCs) was deposited on the MZO to reduce carrier recombination at the interface for inverted PbS quantum dot solar cells with the configuration Indium Tin Oxides (ITO)/MZO/ZnO NC (w/o)/PbS/Au. The effect of film thickness and annealing temperature of MZO and ZnO NC on the performance of PbS quantum dot solar cells was investigated in detail. It was found that without the ZnO NC thin layer, the highest power conversion efficiency(PCE) of 5.52% was obtained in the case of a device with an MZO thickness of 50 nm. When a thin layer of ZnO NC was introduced between MZO and PbS quantum dot film, the PCE of the champion device was greatly improved to 7.06% due to the decreased interface recombination. The usage of the MZO buffer layer along with the ZnO NC interface passivation technique is expected to further improve the performance of quantum dot solar cells

    Role of Vanadium Pentoxide Hole-Extracting Nanolayer in Rubrene/ C

    No full text
    Vanadium pentoxide V2O5 was inserted between the donor layer and the anode as a hole-extracting nanolayer. Compared with devices without a hole-extracting layer, short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE) of rubrene/C70-based heterojunction solar cells with 3 nm V2O5 nanolayer are enhanced by 99%, 73%, 20%, and 310%, respectively. We found that V2O5 interlayer can effectively suppress the contact resistance and increase the hole transport capability. The dependence of the device performance on V2O5 layer thickness as well as fill factor on exciton dissociation and charge transport was also investigated in detail

    Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells

    No full text
    PbS colloidal quantum dots (CQDs) solar cells have already demonstrated very impressive advances in recent years due to the development of many different techniques to tailor the interface morphology and compactness in PbS CQDs thin film. Here, n-hexane, n-octane, n-heptane, isooctane and toluene or their hybrids are for the first time introduced as solvent for comparison of the dispersion of PbS CQDs. PbS CQDs solar cells with the configuration of PbS/TiO2 heterojunction are then fabricated by using different CQDs solution under ambient conditions. The performances of the PbS CQDs solar cells are found to be tuned by changing solvent and its content in the PbS CQDs solution. The best device could show a power conversion efficiency (PCE) of 7.64% under AM 1.5 G illumination at 100 mW cm−2 in a n-octane/isooctane (95%/5% v/v) hybrid solvent scheme, which shows a ~15% improvement compared to the control devices. These results offer important insight into the solvent engineering of high-performance PbS CQDs solar cells
    corecore