8 research outputs found

    Local bone metabolism balance regulation via double-adhesive hydrogel for fixing orthopedic implants

    Get PDF
    © 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)The effective osteointegration of orthopedic implants is a key factor for the success of orthopedic surgery. However, local metabolic imbalance around implants under osteoporosis condition could jeopardize the fixation effect. Inspired by the bone structure and the composition around implants under osteoporosis condition, alendronate (A) was grafted onto methacryloyl hyaluronic acid (H) by activating the carboxyl group of methacryloyl hyaluronic acid to be bonded to inorganic calcium phosphate on trabecular bone, which is then integrated with aminated bioactive glass (AB) modified by oxidized dextran (O) for further adhesion to organic collagen on the trabecular bone. The hybrid hydrogel could be solidified on cancellous bone in situ under UV irradiation and exhibits dual adhesion to organic collagen and inorganic apatite, promoting osteointegration of orthopedic implants, resulting in firm stabilization of the implants in cancellous bone areas. In vitro, the hydrogel was evidenced to promote osteogenic differentiation of embryonic mouse osteoblast precursor cells (MC3T3-E1) as well as inhibit the receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclast differentiation of macrophages, leading to the upregulation of osteogenic-related gene and protein expression. In a rat osteoporosis model, the bone-implant contact (BIC) of the hybrid hydrogel group increased by 2.77, which is directly linked to improved mechanical stability of the orthopedic implants. Overall, this organic-inorganic, dual-adhesive hydrogel could be a promising candidate for enhancing the stability of orthopedic implants under osteoporotic conditions.This work was supported by the National Key R&D Program of China (2020YFA0908200), National Natural Science Foundation of China (82120108017), Six talent peaks project in Jiangsu Province (WSW-018). This work was financed by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” UID/BIM/04293/2019.info:eu-repo/semantics/publishedVersio

    Attention-Based Matching Approach for Heterogeneous Remote Sensing Images

    No full text
    Heterogeneous images acquired from various platforms and sensors provide complementary information. However, to use that information in applications such as image fusion and change detection, accurate image matching is essential to further process and analyze these heterogeneous images, especially if they have significant differences in radiation and geometric characteristics. Therefore, matching heterogeneous remote sensing images is challenging. To address this issue, we propose a feature point matching method named Cross and Self Attentional Matcher (CSAM) based on Attention mechanisms (algorithms) that have been extensively used in various computer vision-based applications. Specifically, CSAM alternatively uses self-Attention and cross-Attention on the two matching images to exploit feature point location and context information. Then, the feature descriptor is further aggregated to assist CSAM in creating matching point pairs while removing the false matching points. To further improve the training efficiency of CSAM, this paper establishes a new training dataset of heterogeneous images, including 1,000,000 generated image pairs. Extensive experiments indicate that CSAM outperforms the existing feature extraction and matching methods, including SIFT, RIFT, CFOG, NNDR, FSC, GMS, OA-Net, and Superglue, attaining an average precision and processing time of 81.29% and 0.13 s. In addition to higher matching performance and computational efficiency, CSAM has better generalization ability for multimodal image matching and registration tasks

    Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance

    No full text
    The microscopic morphology of electromagnetic wave absorbers influences the multiple reflections of electromagnetic waves and impedance matching, determining the absorption properties. Herein, the urchin-shaped bimetallic nickel-cobalt oxide/carbon (NiCo2O4/C) composites are prepared via a hydrothermal route, whose absorption properties are investigated by different morphologies regulated by changing calcination temperature. A minimum reflection loss (RLmin) of -75.26 dB is achieved at a matching thickness of 1.5 mm, and the effective absorption bandwidth (EAB) of 8.96 GHz is achieved at 2 mm. Multi-advantages of the synthesized NiCo2O4/C composites contribute to satisfactory absorption properties. First, the interweaving of the needle-like structures increases the opportunities for scattering and multiple reflections of incident electromagnetic waves, and builds up a conductive network to facilitate the enhancement of conductive losses. Second, the carbon component in the NiCo2O4/C composites enhances the interfacial polarization and reduces the density of the absorber. Besides, generous oxygen vacancy defects are introduced into the NiCo2O4/C composites, which induces defect polarization and dipole polarization. In summary, the ternary coordination of components, defects and morphology led to outstanding electromagnetic wave absorption, which lightened the path for improving the electromagnetic wave absorption property and enriching the family of NiCo2O4 absorbers with excellent performance

    High-Resolution Quantum Dot Light-Emitting Diodes by Electrohydrodynamic Printing

    No full text
    Quantum dot light-emitting diodes (QLEDs) have attracted increasing attention due to their excellent electroluminescent properties and compatibility with inkjet printing processes, which show great potential in applications of pixelated displays. However, the relatively low resolution of the inkjet printing technology limits its further development. In this paper, high-resolution QLEDs were successfully fabricated by electrohydrodynamic (EHD) printing. A pixelated quantum dot (QD) emission layer was formed by printing an insulating Teflon mesh on a spin-coated QD layer. The patterned QLEDs show a high resolution of 2540 pixels per inch (PPI), with a maximum external quantum efficiency (EQE) of 20.29% and brightness of 35816 cd/m2. To further demonstrate its potential in full-color display, the fabrication process for the QD layer was changed from spin-coating to EHD printing. The as-printed Teflon effectively blocked direct contact between the hole transport layer and the electron transport layer, thus preventing leakage currents. As a result, the device showed a resolution of 1692 PPI with a maximum EQE of 15.40%. To the best of our knowledge, these results represent the highest resolution and efficiency of pixelated QLEDs using inkjet printing or EHD printing, which demonstrates its huge potential in the application of high-resolution full-color displays
    corecore