20 research outputs found

    Delayed but Complete Response following Oral Temozolomide Treatment in Melanoma Leptomeningeal Carcinomatosis

    Get PDF
    Isolated leptomeningeal recurrence of melanoma is rare, occurring in 2% of patients with central nervous system involvement secondary to melanoma. The optimal treatment of leptomeningeal carcinomatosis (LMC) in melanoma has not yet been determined and remains a major challenge. We report a melanoma patient who presented with isolated LMC in the form of a new-onset weakness of the lower limbs, paresthesia of the left hand and foot, lumbago and headache. A lumbar puncture and spinal MRI confirmed LMC. The patient was treated with temozolomide 75 mg/m2/day on a 4 weeks on/2 weeks off schedule. After an initial transient clinical deterioration, the patient showed a complete radiological response as well as a dramatic improvement in quality of life. The encouraging clinical response reported here suggests that dose-intensified temozolomide might have significant activity in the treatment of leptomeningeal dissemination of melanoma and may be a valid treatment option for patients who have not been previously exposed to this agent. Moreover, this treatment regimen is extremely well tolerated and obviates the need for repeated intrathecal administrations of chemotherapeutic agents, which are often not well tolerated by patients who have significant co-morbidities due to their disease. As illustrated in this case, response to temozolomide may occur in a delayed manner, highlighting the importance of following temozolomide treatment long enough before determining that it is inefficient in a given patient

    Memory in low-grade glioma patients treated with radiotherapy or temozolomide: a correlative analysis of EORTC study 22033-26033

    Get PDF
    Background: EORTC study 22033-26033 showed no difference in progression-free survival between high-risk low-grade glioma receiving either radiotherapy (RT) or temozolomide (TMZ) chemotherapy alone as primary treatment. Considering the potential long-term deleterious impact of RT on memory functioning, this study aims to determine whether TMZ is associated with less impaired memory functioning. Methods: Using the Visual Verbal Learning Test (VVLT), memory functioning was evaluated at baseline and subsequently every 6 months. Minimal compliance for statistical analyses was set at 60%. Conventional indices of memory performance (VVLT Immediate Recall, Total Recall, Learning Capacity, and Delayed Recall) were used as outcome measures. Using a mixed linear model, memory functioning was compared between treatment arms and over time. Results: Neuropsychological assessment was performed in 98 patients (53 RT, 46 TMZ). At 12 months, compliance had dropped to 66%, restricting analyses to baseline, 6 months, and 12 months. At baseline, patients in either treatment arm did not differ in memory functioning, sex, age, or educational level. Over time, patients in both arms showed improvement in Immediate Recall (P = 0.017) and total number of words recalled (Total Recall; P < 0.001, albeit with delayed improvement in RT patients (group by time; P = 0.011). Memory functioning was not associated with RT gross, clinical, or planned target volumes. Conclusion: In patients with high-risk low-grade glioma there is no indication that in the first year after treatment, RT has a deleterious effect on memory function compared with TMZ chemotherapy. Keywords: chemotherapy; low-grade glioma; memory functioning; radiotherapy

    Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma: A Secondary Analysis of a Randomized Clinical Trial

    Full text link
    Importance Tumor-treating fields (TTFields) therapy improves both progression-free and overall survival in patients with glioblastoma. There is a need to assess the influence of TTFields on patients' health-related quality of life (HRQoL). Objective To examine the association of TTFields therapy with progression-free survival and HRQoL among patients with glioblastoma. Design, Setting, and Participants This secondary analysis of EF-14, a phase 3 randomized clinical trial, compares TTFields and temozolomide or temozolomide alone in 695 patients with glioblastoma after completion of radiochemotherapy. Patients with glioblastoma were randomized 2:1 to combined treatment with TTFields and temozolomide or temozolomide alone. The study was conducted from July 2009 until November 2014, and patients were followed up through December 2016. Interventions Temozolomide, 150 to 200 mg/m2/d, was given for 5 days during each 28-day cycle. TTFields were delivered continuously via 4 transducer arrays placed on the shaved scalp of patients and were connected to a portable medical device. Main Outcomes and Measures Primary study end point was progression-free survival; HRQoL was a predefined secondary end point, measured with questionnaires at baseline and every 3 months thereafter. Mean changes from baseline scores were evaluated, as well as scores over time. Deterioration-free survival and time to deterioration were assessed for each of 9 preselected scales and items. Results Of the 695 patients in the study, 639 (91.9%) completed the baseline HRQoL questionnaire. Of these patients, 437 (68.4%) were men; mean (SD) age, 54.8 (11.5) years. Health-related quality of life did not differ significantly between treatment arms except for itchy skin. Deterioration-free survival was significantly longer with TTFields for global health (4.8 vs 3.3 months; P < .01); physical (5.1 vs 3.7 months; P < .01) and emotional functioning (5.3 vs 3.9 months; P < .01); pain (5.6 vs 3.6 months; P < .01); and leg weakness (5.6 vs 3.9 months; P < .01), likely related to improved progression-free survival. Time to deterioration, reflecting the influence of treatment, did not differ significantly except for itchy skin (TTFields worse; 8.2 vs 14.4 months; P < .001) and pain (TTFields improved; 13.4 vs 12.1 months; P < .01). Role, social, and physical functioning were not affected by TTFields. Conclusions and Relevance The addition of TTFields to standard treatment with temozolomide for patients with glioblastoma results in improved survival without a negative influence on HRQoL except for more itchy skin, an expected consequence from the transducer arrays. Trial Registration clinicaltrials.gov Identifier: NCT00916409

    Ischemic Stroke in Cancer: Mechanisms, Biomarkers, and Implications for Treatment.

    No full text
    Ischemic stroke is an important cause of morbidity and mortality in cancer patients. The underlying mechanisms linking cancer and stroke are not completely understood. Long-standing and more recent evidence suggests that cancer-associated prothrombotic states, along with treatment-related vascular toxicity, such as with chemotherapy and immunotherapy, contribute to an increased risk of ischemic stroke in cancer patients. Novel biomarkers, including coagulation, platelet and endothelial markers, cell-free DNA, and extracellular vesicles are being investigated for their potential to improve risk stratification and patient selection for clinical trials and to help guide personalized antithrombotic strategies. Treatment of cancer-related stroke poses unique challenges, including the need to balance the risk of recurrent stroke and other thromboembolic events with that of bleeding associated with antithrombotic therapy. In addition, how and when to restart cancer treatment after stroke remains unclear. In this review, we summarize current knowledge on the mechanisms underlying ischemic stroke in cancer, propose an etiological classification system unique to cancer-related stroke to help guide patient characterization, provide an overview of promising biomarkers and their clinical utility, and discuss the current state of evidence-based management strategies for cancer-related stroke. Ultimately, a personalized approach to stroke prevention and treatment is required in cancer patients, considering both the underlying cancer biology and the individual patient's risk profile

    Safety and anti-tumor activity of lisavanbulin administered as 48-hour infusion in patients with ovarian cancer or recurrent glioblastoma: a phase 2a study.

    Get PDF
    Lisavanbulin (BAL101553) is the prodrug of avanbulin (BAL27862), a microtubule-destabilizing agent. The goal of this study (NCT02895360) was to characterize the safety, tolerability and antitumor activity of lisavanbulin administered as a 48-hour intravenous (IV) infusion at the recommended Phase 2 dose (RP2D) of 70 mg/m2. Results from the Phase 1 dose-escalation portion of the study identifying the RP2D have been previously reported. Here, we present the findings from the Phase 2a portion of this study. Methods. This multi-center, open-label study included patients with ovarian, fallopian-tube, or primary peritoneal cancer that was either platinum-resistant or refractory (11 patients), or with first recurrence of glioblastoma (12 patients). Lisavanbulin was administered as a 48-hour IV infusion on Days 1, 8, and 15 of a 28-day cycle. Results. Lisavanbulin was well tolerated in both patient cohorts. Thirteen patients (56.5%) developed 49 adverse events assessed as related to study treatment. The majority were mild or moderate; four were grade 3/4. Sixteen SAEs were reported in nine patients (39.1%), with none considered related to study treatment. No AEs led to permanent treatment discontinuation. Three patients in the ovarian cancer cohort had stable disease with lesion size reductions after two cycles of treatment; in the glioblastoma cohort, one patient showed partial response with a > 90% glioblastoma area reduction as best response, and one patient had stable disease after eight cycles of treatment. Conclusion. This study demonstrated a favorable safety and tolerability profile of 48-hour continuous IV infusion of lisavanbulin in patients with solid extracranial tumors or glioblastoma. Clinicaltrials.gov registration: NCT02895360

    A prospective study of the factors shaping antibody responses to the AS03-adjuvanted influenza A/H1N1 vaccine in cancer outpatients.

    No full text
    PURPOSE: To identify the determinants of antibody responses to adjuvanted influenza A/H1N1/09 vaccines in a cohort of cancer outpatients. PATIENTS AND METHODS: Patients with cancer and controls were enrolled in a prospective single-center field study. Two doses of AS03-adjuvanted pandemic influenza vaccine were administered to patients and one dose was administered to controls. Antibody responses were measured using hemagglutination inhibition and confirmed by microneutralization. Geometric mean titers (GMTs) and seroprotection rates (defined as GMTs ≥40) were compared. RESULTS: Immunizations were safe and well tolerated in 197 cancer patients (lymphoma, 57; glioma, 26; lung or head and neck, 37; gastrointestinal, 41; breast, 36) and 138 controls. Similar seroprotection rates (82.3% versus 87%) and GMTs (336.9 versus 329.9) were achieved after two doses of adjuvanted vaccine in cancer patients and one dose in controls. Univariate analyses identified older age, prior immunization against seasonal influenza, lymphoma, CD4 count, active chemotherapy, and rituximab and steroid treatments as being associated with weaker antibody responses. However, only age and chemotherapy plus rituximab remained independent determinants of vaccine responses in multivariate analyses. CONCLUSIONS: Two doses of AS03-adjuvanted influenza vaccine elicited potent antibody responses in most cancer patients despite ongoing chemotherapy, with the exception of rituximab-induced B-cell depletion. Oncology patients treated in an outpatient setting benefit from preventive vaccination against influenza with adjuvanted vaccines

    Clinical outcome with bevacizumab in patients with recurrent high-grade glioma treated outside clinical trials

    Full text link
    Our data reveal valuable palliation with preservation of KPS and an option for steroid withdrawal in patients treated with BEV, supporting the role of this therapy in late-stage disease

    Clinical management and outcome of histologically verified adult brainstem gliomas in Switzerland: a retrospective analysis of 21 patients

    Full text link
    Because of low incidence, mixed study populations and paucity of clinical and histological data, the management of adult brainstem gliomas (BSGs) remains non-standardized. We here describe characteristics, treatment and outcome of patients with exclusively histologically confirmed adult BSGs. A retrospective chart review of adults (age >18 years) was conducted. BSG was defined as a glial tumor located in the midbrain, pons or medulla. Characteristics, management and outcome were analyzed. Twenty one patients (17 males; median age 41 years) were diagnosed between 2004 and 2012 by biopsy (n = 15), partial (n = 4) or complete resection (n = 2). Diagnoses were glioblastoma (WHO grade IV, n = 6), anaplastic astrocytoma (WHO grade III, n = 7), diffuse astrocytoma (WHO grade II, n = 6) and pilocytic astrocytoma (WHO grade I, n = 2). Diffuse gliomas were mainly located in the pons and frequently showed MRI contrast enhancement. Endophytic growth was common (16 vs. 5). Postoperative therapy in low-grade (WHO grade I/II) and high-grade gliomas (WHO grade III/IV) consisted of radiotherapy alone (three in each group), radiochemotherapy (2 vs. 6), chemotherapy alone (0 vs. 2) or no postoperative therapy (3 vs. 1). Median PFS (24.1 vs. 5.8 months; log-rank, p = 0.009) and mOS (30.5 vs. 11.5 months; log-rank, p = 0.028) was significantly better in WHO grade II than in WHO grade III/IV tumors. Second-line therapy considerably varied. Histologically verification of adult BSGs is feasible and has an impact on postoperative treatment. Low-grade gliomas can simple be followed or treated with radiotherapy alone. Radiochemotherapy with temozolomide can safely be prescribed for high-grade gliomas without additional CNS toxicities
    corecore