10 research outputs found

    The Rapid ASKAP Continuum Survey III: Spectra and Polarisation In Cutouts of Extragalactic Sources (SPICE-RACS) first data release

    Get PDF
    The Australian SKA Pathfinder (ASKAP) radio telescope has carried out a survey of the entire Southern Sky at 887.5 MHz. The wide area, high angular resolution, and broad bandwidth provided by the low-band Rapid ASKAP Continuum Survey (RACS-low) allow the production of a next-generation rotation measure (RM) grid across the entire Southern Sky. Here we introduce this project as Spectral and Polarisation in Cutouts of Extragalactic sources from RACS (SPICE-RACS). In our first data release, we image 30 RACS-low fields in Stokes I, Q, U at 25" angular resolution, across 744-1032 MHz with 1 MHz spectral resolution. Using a bespoke, highly parallelised, software pipeline we are able to rapidly process wide-area spectro-polarimetric ASKAP observations. Notably, we use `postage stamp' cutouts to assess the polarisation properties of 105912 radio components detected in total intensity. We find that our Stokes Q and U images have an rms noise of ∼ 80 μJy PSF-1, and our correction for instrumental polarisation leakage allows us to characterise components with ≳ 1% polarisation fraction over most of the field of view. We produce a broadband polarised radio component catalogue that contains 5818 RM measurements over an area of ∼ 1300 deg2 with an average error in RM of 1.6+1.1-1.0 rad m-2, and an average linear polarisation fraction 3.4+3.0-1.6%. We determine this subset of components using the conditions that the polarised signal-to-noise ratio is > 8, the polarisation fraction is above our estimated polarised leakage, and the Stokes I spectrum has a reliable model. Our catalogue provides an areal density of 4±2 RMs deg-2; an increase of ∼ 4 times over the previous state-of-the-art (Taylor, Stil, Sunstrum 2009, ApJ, 702, 1230). Meaning that, having used just 3% of the RACS-low sky area, we have produced the 3rd largest RM catalogue to date. This catalogue has broad applications for studying astrophysical magnetic fields; notably revealing remarkable structure in the Galactic RM sky. We will explore this Galactic structure in a follow-up paper. We will also apply the techniques described here to produce an all-Southern-sky RM catalogue from RACS observations. Finally, we make our catalogue, spectra, images, and processing pipeline publicly available

    Polarimetric profiles of 27 millisecond pulsars

    No full text
    We present high time resolution polarimetric profiles of 27 predominantly southern hemisphere millisecond pulsars, 15 of which have no previously published polarimetry. These observations were made with a new 128-MHz baseband recorder at the Parkes Observatory. There has been some suggestion that millisecond pulsar profiles can undergo radical changes in both pulse shape and polarimetry, mainly due to discrepancies between the Bonn and Jodrell Bank polarimetric studies. If millisecond pulsars are intrinsically unstable, this has ramifications for precision timing and the millisecond pulsar emission mechanism. However, we find ourselves in good agreement with the Jodrell Bank data, and, in most cases, very poor agreement with the Bonn results. The presented polarimetric observations do display some phenomena common to those displayed by normal pulsars, including orthogonal mode transitions in position angle and associated sense changes of circular polarization. The behaviour of the position angle presented by these pulsars is, with some significant exceptions, a shallow or flat sweep across the pulse. This behaviour lends support to theories that suggest millisecond pulsar emission regions are wider, at least in terms of pulse longitude, than those of the normal pulsars. The broad millisecond pulsars J2124-3358 and J2145-0750 display position-angle behaviour that departs significantly from that expected if the magnetic field of these pulsars has a simple dipolar structure

    Forging a path to a better normal for conferences and collaboration

    No full text
    The 2020 COVID-19 pandemic forced a string of cancelled conferences, causing many organizers to shift meetings online, with mixed success. Seizing the opportunity, a group of researchers came together to rethink how the conference experience and collaboration in general can be improved in a more virtual-centric future

    The Rapid ASKAP Continuum Survey III: Spectra and Polarisation In Cutouts of Extragalactic Sources (SPICE-RACS) First Data Release

    Full text link
    The Australian SKA Pathfinder (ASKAP) radio telescope has carried out a survey of the entire Southern Sky at 887.5MHz. The wide area, high angular resolution, and broad bandwidth provided by the low-band Rapid ASKAP Continuum Survey (RACS-low) allow the production of a next-generation rotation measure (RM) grid across the entire Southern Sky. Here we introduce this project as Spectral and Polarisation in Cutouts of Extragalactic sources from RACS (SPICE-RACS). In our first data release, we image 30 RACS-low fields in Stokes II, QQ, UU at 25'' angular resolution, across 744 to 1032MHz with 1MHz spectral resolution. Using a bespoke, highly parallelised, software pipeline we are able to rapidly process wide-area spectro-polarimetric ASKAP observations. Notably, we use 'postage stamp' cutouts to assess the polarisation properties of \ncomponents\ radio components detected in total intensity. We find that our Stokes QQ and UU images have an rms noise of ~80μ\muJy/PSF, and our correction for instrumental polarisation leakage allows us to characterise components with >1% polarisation fraction over most of the field of view. We produce a broadband polarised radio component catalogue that contains \nrms\ RM measurements over an area of ~1300deg^2 with an average error in RM of 1.6+1.1-1.0rad/m^2, and an average linear polarisation fraction 3.4+3.0-1.6%. We determine this subset of components using the conditions that the polarised signal-to-noise ratio is >8>8, the polarisation fraction is above our estimated polarised leakage, and the Stokes II spectrum has a reliable model. Our catalogue provides an areal density of 4±24\pm2 RMs/deg^2; an increase of ∼4\sim4 times over the previous state-of-the-art (Taylor et al. 2009). Meaning that, having used just 3% of the RACS-low sky area, we have produced the 3rd largest RM catalogue to date. This catalogue has broad applications for studying...Comment: 42 pages, 24 figures, 6 tables. Accepted for publications in PAS

    Unexpected circular radio objects at high Galactic latitude

    No full text
    We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation

    Wide-field broad-band radio imaging with phased array feeds : a pilot multi-epoch continuum survey with ASKAP-BETA

    No full text
    The Boolardy Engineering TestArray is a 6 x 12mdish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAP's phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within an ~30 deg2 field of view. By cycling the array through 12 interleaved pointing positions and using nine digitally formed beams, we effectively mimic a traditional 1 h x 108 pointing survey, covering ~150 deg2 over 711-1015 MHz in 12 h of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1σ thermal noise level of 375 μJy beam-1, although the effective noise is a factor of ~3 higher due to residual sidelobe confusion. From this we derive a catalogue of 3722 discrete radio components, using the 35 per cent fractional bandwidth to measure in-band spectral indices for 1037 of them. A search for transient events reveals one significantly variable source within the survey area. The survey covers approximately two-thirds of the Spitzer South Pole Telescope Deep Field. This pilot project demonstrates the viability and potential of using PAFs to rapidly and accurately survey the sky at radio wavelengths
    corecore