5,015 research outputs found
Third-degree heart block in thalassemia major: A case report
Background: First and second-degree heart blocks are partly common rhythm disorders in thalassemic patients but complete heart block is a very rare complication of iron overload cardiomyopathy. Case Presentation: This 15-year-old boy, a known case of major β-thalassemia was admitted to our emergency unit with dyspnea and cough because of decompensated heart failure. The electrocardiogram showed complete heart block with junctional escape rhythm. Interestingly, his previous electrocardiogram taken 2 months earlier, had some PVC and second degree, Mobitz type 1 (Wenckebach) heart block. After improvement of dyspnea and control of blood pressure in normal range, the patient was referred to ER. A dual-chamber permanent pacemaker was implanted and his symptoms improved, but he died 24 days after discharge from hospital. Conclusion: We present a rare case of complete heart block after a second-degree (Mobitz 1) heart block that was due to severe iron overload cardiomyopathy. © 2012 by Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences
Physiology-Aware Rural Ambulance Routing
In emergency patient transport from rural medical facility to center tertiary
hospital, real-time monitoring of the patient in the ambulance by a physician
expert at the tertiary center is crucial. While telemetry healthcare services
using mobile networks may enable remote real-time monitoring of transported
patients, physiologic measures and tracking are at least as important and
requires the existence of high-fidelity communication coverage. However, the
wireless networks along the roads especially in rural areas can range from 4G
to low-speed 2G, some parts with communication breakage. From a patient care
perspective, transport during critical illness can make route selection patient
state dependent. Prompt decisions with the relative advantage of a longer more
secure bandwidth route versus a shorter, more rapid transport route but with
less secure bandwidth must be made. The trade-off between route selection and
the quality of wireless communication is an important optimization problem
which unfortunately has remained unaddressed by prior work.
In this paper, we propose a novel physiology-aware route scheduling approach
for emergency ambulance transport of rural patients with acute, high risk
diseases in need of continuous remote monitoring. We mathematically model the
problem into an NP-hard graph theory problem, and approximate a solution based
on a trade-off between communication coverage and shortest path. We profile
communication along two major routes in a large rural hospital settings in
Illinois, and use the traces to manifest the concept. Further, we design our
algorithms and run preliminary experiments for scalability analysis. We believe
that our scheduling techniques can become a compelling aid that enables an
always-connected remote monitoring system in emergency patient transfer
scenarios aimed to prevent morbidity and mortality with early diagnosis
treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare
Informatics (ICHI 2017), Park City, Utah, 201
A New Protocol for Cooperative Spectrum Sharing in Mobile Cognitive Radio Networks
To optimize the usage of limited spectrum resources, cognitive radio (CR) can be used as a viable solution. The main contribution of this article is to propose a new protocol to increase throughput of mobile cooperative CR networks (CRNs). The key challenge in a CRN is how the nodes cooperate to access the channel in order to maximize the CRN's throughput. To minimize unnecessary blocking of CR transmission, we propose a so-called new frequency-range MAC protocol (NFRMAC). The proposed method is in fact a novel channel assignment mechanism that exploits the dependence between signal's attenuation model, signal's frequency, communication range, and interference level. Compared .to the conventional methods, the proposed algorithm considers a more realistic model for the mobility pattern of CR nodes and also adaptively selects the maximal transmission range of each node over which reliable transmission is possible. Simulation results indicate that using NFRMAC leads to an increase of the total CRN's throughput by 6% and reduces the blocking rate by 10% compared to those of conventional methods
High efficiency coherent optical memory with warm rubidium vapour
By harnessing aspects of quantum mechanics, communication and information
processing could be radically transformed. Promising forms of quantum
information technology include optical quantum cryptographic systems and
computing using photons for quantum logic operations. As with current
information processing systems, some form of memory will be required. Quantum
repeaters, which are required for long distance quantum key distribution,
require optical memory as do deterministic logic gates for optical quantum
computing. In this paper we present results from a coherent optical memory
based on warm rubidium vapour and show 87% efficient recall of light pulses,
the highest efficiency measured to date for any coherent optical memory. We
also show storage recall of up to 20 pulses from our system. These results show
that simple warm atomic vapour systems have clear potential as a platform for
quantum memory
An AC Stark Gradient Echo Memory in Cold Atoms
The burgeoning fields of quantum computing and quantum key distribution have
created a demand for a quantum memory. The gradient echo memory scheme is a
quantum memory candidate for light storage that can boast efficiencies
approaching unity, as well as the flexibility to work with either two or three
level atoms. The key to this scheme is the frequency gradient that is placed
across the memory. Currently the three level implementation uses a Zeeman
gradient and warm atoms. In this paper we model a new gradient creation
mechanism - the ac Stark effect - to provide an improvement in the flexibility
of gradient creation and field switching times. We propose this scheme in
concert with a move to cold atoms (~1 mK). These temperatures would increase
the storage times possible, and the small ensemble volumes would enable large
ac Stark shifts with reasonable laser power. We find that memory bandwidths on
the order of MHz can be produced with experimentally achievable laser powers
and trapping volumes, with high precision in gradient creation and switching
times on the order of nanoseconds possible. By looking at the different
decoherence mechanisms present in this system we determine that coherence times
on the order of 10s of milliseconds are possible, as are delay-bandwidth
products of approximately 50 and efficiencies over 90%
Model Reduction and Neural Networks for Parametric PDEs
We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature
Storage and Manipulation of Light Using a Raman Gradient Echo Process
The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol
for storage and retrieval of optical quantum information. In this paper, we
review the properties of the -GEM method that stores information in
the ground states of three-level atomic ensembles via Raman coupling. The
scheme is versatile in that it can store and re-sequence multiple pulses of
light. To date, this scheme has been implemented using warm rubidium gas cells.
There are different phenomena that can influence the performance of these
atomic systems. We investigate the impact of atomic motion and four-wave mixing
and present experiments that show how parasitic four-wave mixing can be
mitigated. We also use the memory to demonstrate preservation of pulse shape
and the backward retrieval of pulses.Comment: 26 pages, 13 figure
Precision spectral manipulation of optical pulses using a coherent photon echo memory
Photon echo schemes are excellent candidates for high efficiency coherent
optical memory. They are capable of high-bandwidth multi-pulse storage, pulse
resequencing and have been shown theoretically to be compatible with quantum
information applications. One particular photon echo scheme is the gradient
echo memory (GEM). In this system, an atomic frequency gradient is induced in
the direction of light propagation leading to a Fourier decomposition of the
optical spectrum along the length of the storage medium. This Fourier encoding
allows precision spectral manipulation of the stored light. In this letter, we
show frequency shifting, spectral compression, spectral splitting, and fine
dispersion control of optical pulses using GEM
- …