89 research outputs found
An accelerated shape based segmentation approach adopting the pattern search optimizer
AbstractAll known solutions of the shape based segmentation problem are slower than real-time application requirements. In this paper, the problem is formulated as a global optimization problem for an energy objective function with several constraints. This formulation allows the use of the global optimization solvers as a solution. However, this solution will be slow as it requires the evaluation of the objective function for several thousand times. The objective function computation is one of the critical factors that affect the time needed to reach a solution. The authors implemented two accelerated parallel versions of the solution that integrates the objective function and the pattern search solver. The first uses a GPU accelerated implementation of the objective function and the second uses a CPU parallel version which is executed on several processors/cores. The results of the proposed solution show that the GPU version has substantial speed compared to other approaches
Forecasting project schedule performance using probabilistic and deterministic models
AbstractEarned value management (EVM) was originally developed for cost management and has not widely been used for forecasting project duration. In addition, EVM based formulas for cost or schedule forecasting are still deterministic and do not provide any information about the range of possible outcomes and the probability of meeting the project objectives. The objective of this paper is to develop three models to forecast the estimated duration at completion. Two of these models are deterministic; earned value (EV) and earned schedule (ES) models. The third model is a probabilistic model and developed based on Kalman filter algorithm and earned schedule management. Hence, the accuracies of the EV, ES and Kalman Filter Forecasting Model (KFFM) through the different project periods will be assessed and compared with the other forecasting methods such as the Critical Path Method (CPM), which makes the time forecast at activity level by revising the actual reporting data for each activity at a certain data date. A case study project is used to validate the results of the three models. Hence, the best model is selected based on the lowest average percentage of error. The results showed that the KFFM developed in this study provides probabilistic prediction bounds of project duration at completion and can be applied through the different project periods with smaller errors than those observed in EV and ES forecasting models
Molecular insights and inhibitory dynamics of flavonoids in targeting Pim-1 Kinase for cancer therapy
Pim-1 kinase, a serine/threonine kinase, is often overexpressed in various cancers, contributing to disease progression and poor prognosis. In this study, we explored the potential of flavonoids as inhibitors of Pim-1 kinase using a combination of molecular docking and steered molecular dynamics (SMD) simulations. Our docking studies revealed two main binding orientations for the flavonoid molecules. The SMD simulations showed that the binding mode with higher pulling forces was linked to stronger inhibitory activity, with a strong positive correlation (R2 ≈ 0.92) between pulling forces and IC50 values. Quercetin stood out as the most potent inhibitor, showing a pulling force of about 820 pN and an IC50 of less than 6 µM. Further dynamic simulations indicated that quercetin’s hydroxyl groups at the C3, C-5 and C-7 positions formed stable hydrogen bonds with key residues GLU-121, Leu-44 and Val-126, respectively enhancing its binding stability and effectiveness. Our results emphasized the critical role of the hydroxyl group at the C-3 position, which plays a pivotal function in effectively anchoring these molecules in the active site of Pim-1 kinase. Principal component analysis (PCA) of Pim-1 kinase's conformational changes revealed that potent inhibitors like quercetin, galangin, and kaempferol significantly restricted the enzyme's flexibility, suggesting potential inhibitory effect. These findings provide insights into the structural interactions between flavonoids and Pim-1 kinase, offering a foundation for future experimental investigations. However, further studies, including in vitro and in vivo validation, are necessary to assess the pharmacological relevance and specificity of flavonoids in cancer therapy
Low-Complexity Detection of High-Order QAM Faster-than-Nyquist Signaling
Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal transmission technique to considerably improve the spectral efficiency. This paper presents the first attempt in the literature to estimate the transmit data symbols of any high-order quadrature amplitude modulation (QAM) FTN signaling in polynomial time complexity. In particular, we propose a generalized approach to model the finite alphabet of any high-order QAM constellation as a high degree polynomial constraint. Then, we formulate the high-order QAM FTN signaling sequence estimation problem as a non-convex optimization problem. As an example of a high-order QAM, we consider 16-QAM FTN signaling and then transform the high degree polynomial constraint, with the help of auxiliary variables, to multiple quadratic constraints. Such transformation allows us to propose a generalized approach semidefinite relaxation (SDR)- based sequence estimation (GASDRSE) technique to efficiently provide a sub-optimal solution to the NP-hard non-convex FTN detection problem, with polynomial time complexity. For the particular case of 16-QAM FTN signaling,
<i>Garcinia cambogia</i>Â phenolics as potent anti-COVID-19 agents:phytochemical profiling, biological activities, and molecular docking
COVID-19 is a disease caused by the coronavirus SARS-CoV-2 and became a pandemic in a critically short time. Phenolic secondary metabolites attracted much attention from the pharmaceutical industries for their easily accessible natural sources and proven antiviral activity. In our mission, a metabolomics study of the Garcinia cambogia Roxb. fruit rind was performed using LC-HRESIMS to investigate its chemical profile, especially the polar aspects, followed by a detailed phytochemical analysis, which led to the isolation of eight known compounds. Using spectrometric techniques, the isolated compounds were identified as quercetin, amentoflavone, vitexin, rutin, naringin, catechin, p-coumaric, and gallic acids. The antiviral activities of the isolated compounds were investigated using two assays; the 3CL-Mpro enzyme showed that naringin had a potent effect with IC50 16.62 μg/mL, followed by catechin and gallic acid (IC50 26.2, 30.35 μg/mL, respectively), while the direct antiviral inhibition effect of naringin confirmed the potency with an EC50 of 0.0169 μM. To show the molecular interaction, in situ molecular docking was carried out using a COVID-19 protease enzyme. Both biological effects and docking studies showed the hydrophobic interactions with Gln 189 or Glu 166, per the predicated binding pose of the isolated naringin
Development and evaluation of a self-nanoemulsifying drug delivery system for sinapic acid with improved antiviral efficacy against SARS-CoV-2
This study aimed to develop a self-nanoemulsifying drug delivery system (SNE) for sinapic acid (SA) to improve its solubility and antiviral activity. Optimal components for the SA-SNE formulation were selected, including Labrafil as the oil, Cremophor EL as the surfactant, and Transcutol as the co-surfactant. The formulation was optimized using surface response design, and the optimized SA-SNE formulation exhibited a small globule size of 83.6 nm, high solubility up to 127.1 ± 3.3, and a 100% transmittance. In vitro release studies demonstrated rapid and high SA release from the formulation. Pharmacokinetic analysis showed improved bioavailability by 2.43 times, and the optimized SA-SNE formulation exhibited potent antiviral activity against SARS-CoV-2. The developed SA-SNE formulation can enhance SA’s therapeutic efficacy by improving its solubility, bioavailability, and antiviral activity. Further in silico, modeling, and Gaussian accelerated molecular dynamics (GaMD)-based studies revealed that SA could interact with and inhibit the viral main protease (Mpro). This research contributes to developing effective drug delivery systems for poorly soluble drugs like SA, opening new possibilities for their application via nebulization in SARS-CoV-2 therapy
Recommended from our members
A newly developed strain of Enterococcus faecium isolated from fresh dairy products to be used as a probiotic in lactating Holstein cows
The objective of this study was to determine the ability of an isolated strain (EGY_NRC1) or commercial (NCIMB 11181) Enterococcus faecium as a probiotic for lactating cows. Two experiments were conducted: In Experiment 1, the effects of three levels (1, 2, and 3 g/kg diet, DM basis) of isolated and commercial E. faecium on in vitro ruminal fermentation kinetics, gas, methane (CH4) and nutrient degradability were determined. In Experiment 2, thirty multiparous Holstein cows (633 ± 25.4 kg body weight) with 7 days in milk, were randomly assigned to 3 treatments in a completely randomized design in a 60-day experiment. Cows were fed without any additives (control treatment) or supplemented with 2 g/kg feed daily of E. faecium EGY_NRC1 (contain 1.1 × 109 CFU/g) or commercial E. faecium NCIMB 11181 (contain 2 × 1012 CFU/g). Diets were prepared to meet cow's nutrient requirements according to NRC recommendations. Probiotic doses were based on the in vitro Experiment 1. Feed intake, digestibility, blood parameters and lactation performance were evaluated. In Experiment 1, the isolated E. faecium linearly and quadratically increased (P < 0.001) in vitro total gas production (TGP), the degradability of dry matter (dDM) and organic matter (dOM) while decreased (P < 0.05) methane (CH4) percent of TGP, NH3CH4 production, and pH. The commercial E. faecium increased TGP and decreased (P < 0.01) CH4 production, pH and increased the dDM and dOM, short chain fatty acids and ruminal NH3-N concentration. In Experiment 2, the isolated E. faecium increased (P < 0.01) total tract digestibility of DM, neutral and acid detergent fiber, daily milk production and feed efficiency compared to the control treatment without affecting feed intake and milk composition. Moreover, the isolated E. faecium increased (P < 0.05) the proportion of C18:1 trans-9, C18:2 cis-9-12 and C18:2 trans-10 cis-12. Both isolated and commercial E. faecium improved (P < 0.01) organic matter, crude protein and nonstructural carbohydrates digestibility, increased serum glucose (P = 0.002) and decreased serum cholesterol (P = 0.002). Additionally, both E. faecium strains decreased C23:0 (P = 0.005) in milk. In conclusion, the use of E. faecium (isolated and commercial) at 2 g/kg DM of feed improved feed efficiency and production performance, with superior effects on animal performance from isolated E. faecium compared to the commercial one
Recommended from our members
Lactation performance and feed utilization of Rahmani ewes fed with either a newly produced bacteriocin-like substance or a commercial bacteriocin
The aim of the present study was to compare the effect of feeding a newly produced bacteriocin-like substance from Lactococcus lactis ssp.
lactis (PNP) with a commercial bacteriocin (NISEEN-S; CNP) in lactating Rahmani ewe diets. In experiment 1, the effects of four levels (500, 1,000, 1,500, and 2,000 unit/kg substrate, dry matter (DM) basis) of both bacteriocins on in vitro ruminal fermentation kinetics, total gas production (TGP), methane production (CH4), and nutrient degradability were determined. In experiment 2, 2 wk before the expected parturition, 30 multiparous lactating Rahmani ewes (mean ± SD: 2 ± 0.3 parity, 46.8 ± 2.5 kg body weight, 23 ± 2.7 mo of age, and 370 ± 13 g/d of previous milk production) were equally divided into three treatments in a complete randomized design for 90 d. The ewes in the control treatment were offered a diet composed of 600 g of concentrate feed mixture, 300 g berseem hay, and 100 g of faba bean straw (Control), or supplemented with produced bacteriocin like substance (PNP) or commercial (CNP) bacteriocin at 500 unit/kg feed (DM basis). In experiment 1, both PNP and CNP linearly and quadratically decreased (P < 0.001) CH4 production; however, PNP and CNP at 500 unit/kg feed quadratically increased fiber degradability (P < 0.01). In experiment 2, both PNP and CNP increased (P < 0.05) nutrient digestibility, and ruminal total volatile fatty acids, acetate, and propionate, while decreasing ruminal ammonia-N. The PNP treatment increased (P < 0.05) blood total proteins and albumin, while PNP and CNP treatments increase serum glucose. Both PNP and CNP treatments increased (P < 0.05) daily milk production and milk efficiency, without affecting the concentration of milk components. Both PNP and CNP are recommended to improve feed utilization and milk production, with superior results detected for PNP at 500 unit/kg feed daily
- …