
Ain Shams Engineering Journal xxx (2016) xxx–xxx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Ain Shams Engineering Journal

journal homepage: www.sciencedirect .com
Electrical Engineering
An accelerated shape based segmentation approach adopting the pattern
search optimizer
http://dx.doi.org/10.1016/j.asej.2016.11.002
2090-4479/� 2016 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Ain Shams University.
⇑ Corresponding author.

E-mail address: ahassan@eng.asu.edu.eg (A.H. Yousef).

Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated shape based segmentation approach adopting the pattern search opt
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
Ahmed H. Yousef ⇑, Hossam E. Abdelmunim
Computers and Systems Engineering Department, Ain Shams University, Egypt

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 April 2016
Revised 14 October 2016
Accepted 2 November 2016
Available online xxxx

Keywords:
Shape based segmentation
GPU
CUDA
Global optimization
Pattern search
Genetic algorithms
All known solutions of the shape based segmentation problem are slower than real-time application
requirements. In this paper, the problem is formulated as a global optimization problem for an energy
objective function with several constraints. This formulation allows the use of the global optimization
solvers as a solution. However, this solution will be slow as it requires the evaluation of the objective
function for several thousand times. The objective function computation is one of the critical factors that
affect the time needed to reach a solution. The authors implemented two accelerated parallel versions of
the solution that integrates the objective function and the pattern search solver. The first uses a GPU
accelerated implementation of the objective function and the second uses a CPU parallel version which
is executed on several processors/cores. The results of the proposed solution show that the GPU version
has substantial speed compared to other approaches.
� 2016 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the most difficult challenges in the field of shape based
segmentation problem is that high computational power is neces-
sary to reach fast accurate performance. The real-time processing
of image shape based segmentation is difficult to attain without
the use of parallel computing. High-resolution cameras and
increasing accuracy requirements challenge the real-time perfor-
mance realization with the best ordinary modern CPU [1].

The shape based segmentation problem uses an energy objec-
tive function that contains multiple minima and several constrains
that should be satisfied [2,3]. The constraints of the objective func-
tion are non-smooth [4–6]. The problem is characterized by having
a linear equality constraint and lower and upper bounds for the
parameters. This makes the optimization problem suitable to be
solved by both the pattern search and the genetic algorithm opti-
mization [7–12]. However, up to the authors’ knowledge, this
was not evaluated or covered in literature.

In the same time, the parallel systems that use CPUs with mul-
tiple processors and cores or GPU are continuously evolving into a
powerful and cheap computation resource [1,13,14]. For example,
Matlab� has the parallel computation toolbox to support both
variants. Moreover, GPUs support several high-level languages
including C.

Because computer vision and image processing algorithms usu-
ally perform the same calculations on each pixel of the image,
which is a typical single instruction multiple data (SIMD) scenario,
these calculations can be parallelized on CPUs with multiple cores
and GPUs [15–19]. Shen et al. implemented processing of MPEG
video encoding [13]. GpuCV [15], MinGPU [16] and OpenVIDIA
[17] are examples of libraries that are created to implement com-
puter vision on the GPU platform. In [14], the non-rigid registration
is solved. Other attempts to speed up similar applications include
segmentation and integral image computation [18–20], medical
image registration [21] and high performance Iris recognition
systems [22].

The GPU is used in several scientific applications to speed up
the slow operations [23]. Zhu attempted to speed up the classical
local pattern search using the GPU for several simple objective
functions including Step, Sphere, Ackley, Rastrigin and Rosenbrock
[24,25]. Computational results on the global optimization toolbox
[26] indicate that the GPU-accelerated method is orders of magni-
tude faster than the corresponding CPU implementation. However,
this contribution did not take into consideration that the objective
functions in computer vision algorithms are very slow compared to
both the search solver execution itself and to the simple bench-
mark objective functions used in [24,25]. On the other hand, this
paper focus on the situation when the objective function is very
slow and needs substantial acceleration by executing it in parallel.
imizer.

https://core.ac.uk/display/82657802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.asej.2016.11.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ahassan@eng.asu.edu.eg
http://dx.doi.org/10.1016/j.asej.2016.11.002
http://www.sciencedirect.com/science/journal/20904479
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.asej.2016.11.002

2 A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx
Solving the shape based segmentation problem involve many
mathematical and logical operations for each pixel of the images.
This makes the GPU very suitable for the GPU provides a massive
data parallel processing capability that facilitates reasonable accel-
eration. However, porting the shape based segmentation to GPU
with a reasonable speedup is not a trivial task. The proposed par-
allel target algorithm is designed carefully in a way that considers
the hardware limitations of the GPUs to achieve a reasonable per-
formance gain against ordinary CPUs.

We selected NVIDIA CUDA framework to be used in this paper
because it enables the programmer to control the parallelism by
specifying the grid size and number of threads on the block. In
addition, the programmer can define which data will be stored in
the global memory space and which data should be used in the fas-
ter shared memory to be used simultaneously by parallel threads.

The contributions of this paper are three fold: First, a parallel
solution for an energy objective function is proposed using CUDA
programming model to accelerate the execution time. Second,
the standard Matlab� pattern search solver is integrated with the
accelerated objective function to solve the problem. The results
are compared to the genetic algorithm solver using the accuracy
and execution time measurable metrics to numerically evaluate
the effectiveness of the integrated solution. Then, the time execu-
tion results of the integrated solution are compared with another
parallel implementation on different processors/cores/workers.

The remainder of this paper is organized as follows: Section 2
provides the necessary background including a description of the
shape based segmentation problem, global optimization, and
GPU/CPU parallel platform setup. Section 3 addresses the proposed
methodology including the performance criteria and problem con-
strains, the detailed implementation, the environment of CPU and
CUDA, the benchmarking and optimization tools, the description of
the proposed parallel solution and its detailed GPU mapping.
Experimental results and validation are presented and discussed
thoroughly in Section 4. Finally, Section 5 concludes this paper.
2. Background

2.1. Shape based segmentation problem

Shape based segmentation is one of the most difficult tasks
under the umbrella of computer vision. The target is to mark
boundaries of objects of interest. Image noise, in-homogeneities,
lack of strong edges, and occlusion represent the challenges. Unfor-
tunately, there is no crisp definition for object boundaries. Shape
based segmentation is considered one of the preliminary tasks
for computer graphics, visualization, and diagnostics in medical
imaging, military applications and object character recognition.

When large in-homogeneities and occlusions exist, most
approaches fail in marking the object boundaries correctly. This
includes graph theoretic, region-based techniques, clustering,
edge, and pixel approaches. This raise the need of more sophisti-
cated techniques by adding prior knowledge about object shapes.
Prior knowledge of objects includes the necessary information
about shape boundaries as well as intensity variations. Level sets
are used to meet these requirements due to their smoothness
properties and capability to fit to ill-defined boundaries [27]. Level
sets are preferred over deformable model due to its flexibility of
merging and splitting without the need of any parameters. In addi-
tion, its implementation in 2D and 3D is straightforward.

Gathering prior knowledge about object boundaries is done by
representing shape variations implicitly by level set functions after
removing differences between the training curves/surfaces. In
many cases, a prior shape/boundary model is a weighted sum of
implicitly represented shapes. Such a model is embedded within
Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
the image domain by registration. Image intensity information is
modeled by another implicit function. Successfully registering
the two implicit functions will result in marking the object bound-
aries accurately. Registration of implicitly represented shapes is
formulated as a minimization of sum of squared differences of
the two implicit functions. In this case, the energy function is not
convex and has a big number of parameters. Therefore, a smart
optimization technique is required.

2.1.1. Shape representation [27,28]
A planar smooth curve can be defined as C(p): R? R2 with a

parameter p 2 ½0;1�. The point vector is defined as C(p) = [x(p) y
(p)]T where x 2 ½0;Xmax� and y 2 ½0;Ymax�. This is an explicit repre-
sentation of the given contour/shape C. An implicit shape represen-
tation will be demonstrated as follows:

Given a smooth curve, C (defined above), an implicit function
can be defined by

UðXÞ : X 2 R2 ! R where ;UðXÞ ¼ kX0 � Xk; X and X0 2 X; ð1Þ
The closest point on the shape C to X is X0. The shape/boundary

points always satisfy the condition |U(C)| = 0.

2.1.2. Global registration of shapes
The global registration process is formulated as an objective

function minimization as below:

E ¼
Z
X
d0ð/a;/bÞðs/aðXÞ � /bðAÞÞ2dX ð2Þ

A transformation with scales, rotation, and translation is
defined by the matrix, A. This transformation changes the source
shape a to match a target b. The parameter s is defined as the max-
imum of the axial scaling parameters (sx, sy). The function (d0) is
used to narrow the matching space between the two domains.
The above functional describes the registration in a better way
since it incorporates a scaled version of the source shape represen-
tation. It is worth mentioning here that the involved functions are
not differentiable at the line (sx = sy). The parameters {sx, sy, h, Tx,
Ty} are required to minimize the energy functional E.

2.1.3. Model-based boundary detection
A boundary model is represented implicitly by the function

/p ¼
PN

i¼1xi/i where N is the number of training boundaries, /i

is the implicit representation of the boundary i, and xi 2 R+. This
representation is a weighted-sum of the implicit representations
of the training shapes. Intensity-based segmentation of the region
of interest is represented implicitly by the function /g [2,27]. The
parameters vector, U = [sx, sy, h, Tx, Ty, x1, . . .,xN]T is obtained by
minimizing the following objective function (defined as above):

EðUÞ ¼
Z
X
d0ð/p;/gÞðs/pðXÞ � /gðAÞÞ2dX ð3Þ

where A is defined as above [27]. The minimization problem can be
written as

bU ¼ argmin
U

E ð4Þ

This optimization problem is subject to the following con-
strains: (1) Scales are positive real numbers. (2) Weights are posi-

tive real numbers. (3) Sum of weights is unity or
PN

i¼1xi ¼ 1. (4)
Also, each parameter value takes a value between a lower and
upper bounds. Such an optimization problem is a challenging one
because: (1) Convexity of such a function is not guaranteed. (2)
The objective function is not proved to be smooth. In addition, it
is not differentiable at all points. These issues limit the use of some
optimization techniques. (3) The number of parameters that the
hape based segmentation approach adopting the pattern search optimizer.

http://dx.doi.org/10.1016/j.asej.2016.11.002

A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx 3
function takes is large (N + 5). This makes the visualization of the
function surface impossible and prevent checking its characteris-
tics for optimization.

2.2. Global optimization algorithms [26]

Finding the minimum value of the objective function under cer-
tain constrains is a global optimization problem. This problem is
solved by global optimization solvers that iterate to find the solu-
tion. Both Pattern Search and Genetic Algorithm proved their abil-
ities to be effective solvers and handle all types of constrains for a
wide range of problems. Direct Search is characterized by their
provable ability to converge using deterministic iterates approach.
Genetic Algorithms use random numbers and have stochastic iter-
ates and usually converge in a reasonable amount of time. The
algorithm of the pattern search can be found in [8,12,25] while
the Genetic algorithm is well described in [5,7].

2.3. GPU Architecture and problem characteristics

A GPU contains several multiprocessor cores. These cores can
execute the same code concurrently using tens or hundreds of
threads. A parallel function that is executed many times on the
image pixels, is executed on the device in parallel and called a ker-
nel. Each processor of the multiprocessor works on different data
simultaneously. The device maintains its own global memory. Mul-
tiprocessors also have different levels of faster memory including:
registers (32 bits each, total 64 KB), shared memory (48–64 KB),
constant cache, and texture cache.

Shape-based segmentation algorithms involve independent
processing of a large pixel set which can benefit from the parallel
execution of the GPU. In addition, shape based registration
algorithms use several model image files which require large
memory to store pixel data. Because the access of such files is often
regular and sequential, it suits very well the GPU model. For a GPU
device, the decision of using shared memory is important to min-
imize the latency problem and to achieve reasonable memory
bandwidth.

The shape based registration code using pattern search or
genetic algorithm is characterized by having some code that can
be converted to parallel, for example calculating the fitness func-
tion in the genetic algorithm and computing the objective function
for the mesh points in the pattern search algorithm. However,
there are other parts of both algorithms that are sequential. For
example, the selection process in the genetic algorithm and the
mesh sizing in the pattern search.
3. Methodology

In this paper, we formulated the model based object boundaries
marking as an optimization problem. The objective function calcu-
lation is accelerated by implementing it on GPU using CUDA. Then,
it is integrated with the standard pattern search solver. Then the
results of the proposed solution are compared to the results
obtained from genetic algorithm optimization technique. Then, a
comparison is performed with the results obtained from the paral-
lel implementation on several number of CPU processors/cores by
the Matlab� parallel computation toolbox. Several exhaustive
experimentation and validations are used to illustrate the object
boundary extraction of different images. In other words, this paper
compares the results of the Matlab� based sequential implementa-
tion, the proposed combined Matlab-CUDA-GPU parallel imple-
mentation of the pattern search and genetic algorithms and
Matlab� based CPU parallel implementation.
Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
The CPU parallel version of the proposed solution used the stan-
dard Matlab� parallelized version of the Pattern Search and
Genetic solvers since the standard Matlab� Parallel Computing
ToolboxTM support the code execution on multicore cores/
processors.

We selected both Direct Pattern Search and Genetic Algorithms
to solve the problem because they do not use derivatives, do not
require the objective function to be smooth in addition to their
effectiveness and efficiency. In the same time, their Matlab imple-
mentation support vectorized functions [26]. This means that they
can optionally compute the objective functions of a collection of
vectors in one function call, causing the execution time to be much
less than in the case of serial computation [26].

Other metaheuristics based techniques including Particle
Swarm Optimization (PSO), Differential Evolution (DE), Harmony
search (HS) do not support vectorization implementation which
prevent them from being used with parallel Matlab� execution
on CPU. Other techniques like Simulated Annealing and differential
evolution is found to be very slow in GPU [29].

The objective function is rewritten to accept a matrix in order to
benefit from the acceleration resulted from converting the objec-
tive function to parallel implementation. This computation the
objective function in vectorized fashion [26] allows the use of a
GPU with large number of processors (tens, hundreds or thou-
sands) in parallel. It is expected that this will be much faster than
other SIMD streaming extension vectorization techniques that uses
128 bit registers to execute code for four integers simultaneously
instead of one [29]. The constraints are implemented with the glo-
bal optimization toolbox as a penalty function whose value is
added to the objective function.

We used a dataset that includes twelve model images of size
128 � 128 pixels. The target image size is 512 � 512. The size of
the model images and target images are selected to be
different to ensure generality. We selected smaller size for
model images because it is known that GPU is scaled well for large
images [1].

In order to ensure fair comparison between algorithms, several
precautions are used. For example, the test of each solver is com-
posed of twenty independent runs. For each run, the following
results are reported: the obtained minimum value of the objective
function (as a measure of accuracy), the best parameter set values
(translation, scale, rotation and weights). We used several runs
because the execution time varies from a run to another according
to other processes working by the operating system. In addition,
the accuracy vary from a run to another because of the stochastic
nature of the algorithms. Therefore, we reported the execution
time and accuracy for several runs and reported the average, min-
imum and maximum values.

Although we can start all the solvers with the same set of ran-
dom points as well, we used different sets of random points for
each run to ensure that similar final results are achieved even with
the stochastic nature of solvers. Other precautions include using
the same values of 10�6 are used for the tolerance in function
and the tolerance in parameter value for both the Genetic Algo-
rithm and Pattern Search.

Genetic Algorithm is customized to have the initial population
around an initial point. In this paper, Genetic algorithm is cus-
tomized by modifying initial population size to cover multiple
basins. Other customizations that can be tackled in the future
include changing fitness functions, scaling options or defining
new parent selection, crossover, and mutation functions. Pattern
search can be customized in the future by defining polling, search-
ing, and other functions. In order to have an accurate comparison,
we used the default settings for both pattern search and genetic
algorithms solvers [7–9,26].
hape based segmentation approach adopting the pattern search optimizer.

http://dx.doi.org/10.1016/j.asej.2016.11.002

4 A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx
3.1. Performance criteria and problem constrains

Although the Number of function evaluations (NFEs) is an
important criterion to compare different algorithms for obtaining
a value to reach, we consider the execution time as a fairer crite-
rion that takes vectorization and multiple core support and over-
head into consideration while NFEs do not reflect these factors.

In the shape based segmentation process, an approximate
answer could be fine unless we have the resources to exhaust a
result. The problem is considered an ‘‘online” problem that must
be solved many times within a short time frame. Therefore, the
necessary CPU time matters a lot.

For each test, the number of function execution is reported
along with the minimum, average, maximum and standard devia-
tion of the execution time and the objective function minimum
values. These measures are used to compare time, accuracy and
reliability of the solvers.

The following constraints are applied: (1) The sum of weights of
different images similarity equals one. (2) Upper bound and lower
bounds are applied for all parameters.

3.2. Detailed implementation

To simplify the implementation, we used the standard Matlab�

implementation of the genetic algorithm solver and the pattern
search solver to find the best value of the weights, translation, rota-
tion and scaling parameters that minimizes the objective function.
The GA is configured with the default value of 0.8 for Crossover
fraction and with decreasing Gaussian default mutation option.

The objective function is implemented in CUDA. The C-MEX is
used as an interface between the solvers Matlab� code and the
objective function CUDA code. The C-MEX function is responsible
from converting the column-major order to row-major order
matrices from Matlab to C and vice versa.

3.3. Environment and used tools

In order to compare the different solver algorithms, Matlab�

programs are written for the solver part and CUDA is used to
implement the objective function. The programs are executed on
a machine with the following configuration and CPU Specifica-
tions: The used processor is an Intel(R) Core(TM) i7-4702MQ CPU
@ 2.20 GHz. The used processor has 4 cores and 8 threads. The
memory was 8 GB RAM. The used Graphics card is NVIDIA GeForce
GT 720 M, with the following GPU specifications: CUDA Compute
Capability: ‘2.1’, two symmetric multiprocessors, 96 CUDA Cores.
The GPU can handle up to 1024 simultaneous threads per block
with maximum shared memory of 48 KB per block. The Total
Memory is 2 GB.

In order to test the scalability of the solution on larger GPUs
with larger number of cores, we used a K20 GPU based machine
with 2496 cores on an Intel Xeon E5-2609 2.5 GHz host processor.

3.4. Objective function implementation on the GPU

The target image input and the models images are stored in the
global memory because their size was very large (512 � 512 pixels
of floating point numbers for the target input image and 128 � 128
pixels for the 12 model images, respectively). This means they can-
not fit in either the constant memory or texture memory. Prelimi-
nary tests showed putting one of the images only in the constant
memory will not improve the speed significantly. Other investi-
gated option was the compression of the images by quantizing
the levels of pixels but this option degraded the accuracy
significantly.
Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
For each parameter set instance (a row of 17 parameters: two
for scaling, two for translation, one for rotation and twelve for
weights), there is a need to transfer model and target images and
parameter set instance from the CPU to GPU (HostToDevice) and
to transfer the results back from the GPU to CPU (DeviceToHost).
The execution time and performance of the objective are affected
by the memory transfer overhead. Therefore, our solution pro-
posed the use of a parallel implementation of the vectorized func-
tion on the CUDA level by sending several parameter set instances
at the same time. The input image and the model images are
passed from the host memory to the GPU device memory only once
for several parameter set instances. Then the computation of sev-
eral sets of parameter set instances (nRows ⁄ 17 parameters) is
executed in parallel to generate the nRows results, as shown in
Fig. 1. This maximizes the number of computations per this large
memory transfer.

Because the resources of the GPU device used was limited. We
define a chunk size of 1024 which is the maximum number of
parameter set instances that are computed in parallel. If the num-
ber of parameter set instances exceeds this limit, it will be sent in
several chunks sequentially from the host code to the GPU and
each chunk will be executed in parallel.

The GPU parallel implementation consists of three kernel func-
tion. The first one is designed to have the same number of threads
as the number of pixels and perform the average shape calculation
and the energy function computation in a per-pixel/per-thread
manner. The first kernel is designed to use global memory coalesc-
ing in order to conserve bandwidth, while reducing effective
latency. In the first kernel, shared memory is used to allow
16 � 16 blocks to get a tile from the input image. Also, another
shared memory with size 16 � 16 is used to store the results of cal-
culating the energy function per block. The use of shared memory
is much faster than the use of the global memory. This is shown in
the right part of Fig. 2. We used a thread block of (16, 16, 2) and a
grid size of (8, 8, NumberOfRows/2). Using the CUDA Occupancy
Calculator, this is equivalent to 67% Occupancy of each
Multiprocessor.

The second kernel uses the well-known resource efficient list
reduction algorithm in order to calculate the sum of the several
pixels energy function to have the partial sum per block. This is
shown in the left portion of Fig. 2.

The reduction algorithm is selected to minimize branch diver-
sity. Each thread is used to calculate the sum of the energy function
of two pixels. Then half of the threads are used to compute the sum
of four pixels and the loop continues till the entire block sum is cal-
culated. This kernel is characterized by data dependency. Paral-
lelism among threads in a thread block is serialized when some
threads need to synchronize to share data between each other
through memory access [1]. A third kernel is used to calculate
the gross sum for each parameter set instance. It uses the same
technique used with the second kernel but for one dimensional
array instead of two dimensional one.
4. Result and discussion

4.1. Using vectorization and CUDA on the objective function

Matlab, C and CUDA are implemented for both the vectorized
and non vectorized version of the objective function. Both Matlab
and C are implemented sequentially and CUDA is implemented
on a parallel GPU. They are compared for different number of
parameter set instances. Table 1 shows the average time per
parameter set instance for different implementations.

If we compare each column that represent the vectorized
version and the corresponding column that represent the non
hape based segmentation approach adopting the pattern search optimizer.

http://dx.doi.org/10.1016/j.asej.2016.11.002

Figure 1. Vectorized inputs/vectorized outputs of the shape based segmentation problem (global memory view).

Figure 2. Per pixel energy function calculation and partial sum computation.

Table 1
Average execution time (in seconds, per one parameter set instance) of the objective function for CUDA, C and Matlab.

Number of parameter set instances CUDA (parallel) C (sequential) Matlab (sequential)

Vectorized Non-vectorized Vectorized Non-vectorized Vectorized Non-vectorized

10 0.0034 0.0130 0.0014 0.0024 0.0258 0.0260
100 0.00282 0.01054 0.00146 0.00154 0.02830 0.02881
1K 0.000722 0.006274 0.001294 0.001345 0.023707 0.023805
10K 0.00065822 0.0049004 0.0013505 0.0013818 0.0264232 0.0264901

A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx 5
vectorized version, we can conclude from the table that the par-
allel vectorized version of CUDA is faster than the corresponding
non vectorized version of CUDA by 8 times (for large number of
parameter set instances). Matlab and C are characterized by very
small difference in the time of vectorized and non-vectorized
cases. This means that there is some optimization engines in
Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
Matlab and C that are able to cache repeated similar parameters
(like the images). The CUDA version is faster than the Matlab� by
about 35+ times. Although this comparison might not be
fair because Matlab is not designed for high performance, it
ensures that CUDA offers a very powerful high performance
computation.
hape based segmentation approach adopting the pattern search optimizer.

http://dx.doi.org/10.1016/j.asej.2016.11.002

Figure 4. Error comparison of pattern search and genetic algorithm solvers.

6 A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx
4.2. Comparing proposed solution to genetic algorithms with different
population size

In this experiment, both the vectorized and non-vectorized ver-
sions of the pattern search are compared to the Genetic algorithm
with different population size. The pattern search vectorization is
inspected with the complete search option. The non-vectorized
version of the GA represent the sequential execution of the default
number of chromosomes (20 chromosomes). The used genetic
algorithm is configured with the default population size (20 chro-
mosomes). Then, several population sizes are used other than the
default population size (50 chromosomes and 100 chromosomes).

Fig. 3 shows the average value of the best minimum value of the
energy objective function (E), defined in Eq. (3), obtained by each
solver for all runs. It shows also the minimum and maximum val-
ues obtained and the standard deviation. One solution is better
than another if its objective function value is smaller than the
other. Pattern search takes reasonable number of function evalua-
tions, and searches through several basins, arriving at a reasonably
good solution [25].

The results of the accuracy (measured according to the error
function: defined as the amount/percent of overlapping between
the resulting shape and the ground truth divided by the ground
truth volume, and measured in percentage) and normalized execu-
tion time (defined as the solver execution time divided by the fast-
est solver execution time) are shown in Figs. 4 and 5 to compare
the different algorithms.

It is noted that the reported time and minimum function value
varies from a run to run, represented by the change between min-
imum time, average time and maximum time. This was expected
for genetic algorithm because it is a stochastic solver. Although
pattern search is a deterministic search algorithm, the decision to
start each test from a random initial point between the lower
bound and upper bound causes the execution time to change
slightly from a test to test and from a run to another run.

It is clear from the previous figures that pattern search is con-
sidered faster and more accurate than genetic algorithm. Genetic
Algorithm takes many more function evaluations than pattern
Figure 3. Accuracy comparison of pattern

Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
search. It may reach a better solution by chance. Genetic algorithm
is stochastic, so its results may change with every run [25].

In addition, vectorization of the same configuration of any algo-
rithm leads to a faster solution. Also, it is concluded that the
increase in the number of chromosomes (population size) in the
genetic algorithm leads to a solution with lower objective function
value (better solution) and less error.

It is worth mentioning that finding the accurate global optimal
solution is usually accompanied by some model noise. Usually the
near optimal solutions represent a reasonable and acceptable
solution.
search and genetic algorithm solvers.

hape based segmentation approach adopting the pattern search optimizer.

http://dx.doi.org/10.1016/j.asej.2016.11.002

Figure 5. Execution time comparison of pattern search and genetic algorithm solvers.

A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx 7
Part (a) of Fig. 6 shows synthetic images of the fighter jet and
number four images. Initialization of a shape model is depicted
in Fig. 6 part (b) while final boundaries are detected and illustrated
in Fig. 6 part (c).

The results show that the pattern search solver was successful to
find the boundaries in spite of the noise and the background lines.
4.3. Comparing proposed solution to the parallel CPU implementation

In Fig. 7, the left part shows a comparison between the Matlab�

vectorized version of Pattern Search which runs on different paral-
Figure 6. The used data sets, target images, i

Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
lel CPU with different numbers of workers and the CUDA version
that runs on the GPU. The right part shows the corresponding
results for the genetic algorithm.

It is clear from the previous figure that the Matlab� genetic
algorithm with CUDA implementation of the objective function is
the fastest algorithm. It takes only 1� seconds (as shown in the
rightmost orange diamond). On the computation environment
mentioned, this takes 7.5 s for one run.

On the other hand, The integrated Matlab� implementation of
the pattern search solver with the Matlab� vectorized implementa-
tion of the objective function is very slow and takes 20� (as shown
by the leftmost red diamond). CPU parallelization of both the pat-
nitial shape model and final boundaries.

hape based segmentation approach adopting the pattern search optimizer.

http://dx.doi.org/10.1016/j.asej.2016.11.002

Figure 7. Comparison between multiple CPU and CUDA versions for both pattern search and genetic algorithm solvers.

Table 2
C execution time, CUDA execution time and speed up of the objective function on
different GPUs.

GeForce GT 720M K20

Number of cores 96 2496
Execution time in C (s) 40,836 25,870
Execution time in CUDA (s) 14,694 1080
Speedup 2.8 24

8 A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx
tern search algorithm and genetic algorithmwith different number
of workers does not change its speed or execution time signifi-
cantly. This happens because Matlab parallel computation toolbox
is not designed to provide high-performance. In addition, the glo-
bal optimization process is considered a light process for multiple
CPU/Cores (a process that has small number of arithmetic and logic
operation that needs small execution time compared with the
communication overhead). Aside of the objective function compu-
tation which is intensive, other parts of the genetic algorithm and
pattern search do not take a lot of computation. For the CPU paral-
lelization to be effective and get the expected speed-up, it is
required that each part of the algorithm to be more computation-
ally than that.

The reason for this is that CPU parallelization is implemented in
Matlab� by shipping the body of the loop to the workers (separate
processes) and then collecting the results. The overhead is large to
send the work out, receive the results, and piece the overall
answers back together. In brief, the overhead to send the code to
multiple processors and collect result and synchronize the pro-
cesses is larger than the computation.

It is very clear that CUDA implementation of the objective func-
tion has superior results compared with CPU implementations for
both the pattern search and genetic algorithm.
4.4. Proposed solution performance comparison on different GPUS

In this experiment, the execution time of the GPU implementa-
tion is compared on two different GPUs. The first one is the
GeForce GT 720M (96 Cores) and the second one is a larger K20
GPU machine with 2496 cores. In Table 2, the results showed a
speed up of left part shows a comparison between the Matlab�

vectorized version of Pattern Search, different CPU parallel versions
with different numbers of workers and the CUDA version. The right
part shows the results for the genetic algorithm implemented in
both CPU parallel versions and CUDA.
Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
5. Conclusion and future work

In this paper, both the design and implementation aspects of a
fast pattern search optimization solver are explored to solve the
shape based segmentation problem. The selected objective func-
tions are parallelized efficiently on the GPU. Results show that
the accuracy of the proposed solution is better than genetic algo-
rithm. The GPU based implementation is faster than the CPU paral-
lelization option. These results can be used by other researchers to
apply the same methodology with other optimization techniques
including variants of gradient descend and nature inspired opti-
mization algorithms. We encourage researchers to investigate
more GPU features and apply them to achieve higher speedup.
For example, the use of surface memory and streams for sending
the parameter asynchronously may accelerate the solution.

References

[1] Park In Kyu, Singhal Nitin, Lee Man Hee, Cho Sungdae, Kim Chris W. Design and
performance evaluation of image processing algorithms on GPUs. IEEE Trans
Parallel Distributed Syst 2011;22(1):91–104. doi: http://dx.doi.org/10.1109/
TPDS.2010.115.

[2] El Munim Hossam E Abd, Farag Aly A. Curve/surface representation and
evolution using vector level sets with application to the shape-based
segmentation problem. Pattern Anal Mach Intelligence, IEEE Trans 2007;29
(6):945–58.

[3] El Munim H Abd, Farag Aly A. Shape representation and registration using
vector distance functions. In: Computer vision and pattern recognition.
CVPR’07. IEEE Conference. IEEE; 2007.

[4] El Munim HE Abd, Farag Aly A. A shape-based segmentation approach: an
improved technique using level sets. Computer vision. ICCV 2005. Tenth IEEE
International Conference, vol. 2. IEEE; 2005.
hape based segmentation approach adopting the pattern search optimizer.

http://dx.doi.org/10.1109/TPDS.2010.115
http://dx.doi.org/10.1109/TPDS.2010.115
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0010
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0010
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0010
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0010
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0015
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0015
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0015
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0020
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0020
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0020
http://dx.doi.org/10.1016/j.asej.2016.11.002

A.H. Yousef, H.E. Abdelmunim / Ain Shams Engineering Journal xxx (2016) xxx–xxx 9
[5] Aslan Melih S et al. A new shape based segmentation framework using
statistical and variational methods. In: Image processing (ICIP), 18th IEEE
international conference. IEEE; 2011.

[6] Munim Abd EL, Hassan Hossam El Din. Implicit curve/surface evolution with
application to the image segmentation problem. Dissertation Abstracts Int
2007;68(05).

[7] Deb K. An efficient constraint handling method for genetic algorithms. Comput
Methods Appl Mech Eng 2000;186(2–4):311–38.

[8] Glover F. A template for scatter search and path relinking. In: Artificial
evolution. Berlin Heidelberg: Springer; 1998. p. 1–51.

[9] Kolda TG, Lewis Robert Michael, Torczon Virginia. A generating set direct
search augmented lagrangian algorithm for optimization with a combination
of general and linear constraints. Sandia National Laboratories; 2006.

[10] Audet C, Savard G, Zghal W. A mesh adaptive direct search algorithm for
multiobjective optimization. Eur J Operational Res 2010;204(3):545–56.

[11] Črepinšek M, Liu S-H, Mernik M. Replication and comparison of computational
experiments in applied evolutionary computing: common pitfalls and
guidelines to avoid them. Appl Soft Comput 2014;19:161–70.

[12] Črepinšek M, Liu S-H, Mernik L. A note on teaching–learning-based
optimization algorithm. Inf Sci 2012;212:79–93.

[13] Shen G, Gao G-P, Li S, Shum H, Zhang Y. Accelerate video decoding with generic
GPU. IEEE Trans Circuits Syst Video Technol 2005;15(5):685–93.

[14] Modat Marc, Gerard G. Ridgway, Taylor Zeike A., Lehmann Manja, Barnes
Josephine, Fox Nick C., et al. Fast free-form deformation using graphics
processing units. Comput Meth Prog Biol.

[15] Allusse Y, Horain P, Agarwal A, Saipriyadarshan C. GpuCV: an open source
Gpu-accelerated framework for image processing and computer vision. In:
Proc. ACM Int’l conf. multimedia. p. 1089–92.

[16] Babenko P, Shah M. MinGPU: a minimum GPU library for computer vision.
Real-Time Image Process 2008;3(4):255–68.

[17] Fung J, Mann S, Aimone C. OpenVIDIA: parallel GPU computer vision. In: Proc.
ACM Int’l conf. multimedia. p. 849–52.

[18] Lefohn Aaron E, Cates Joshua E, Whitaker Ross T. Interactive, GPU-based level
sets for 3D segmentation. In: Medical image computing and computer-assisted
intervention-MICCAI. Berlin Heidelberg: Springer; 2003. p. 564–72.

[19] Abramov Alexey et al. Real-time image segmentation on a GPU. Facing the
multicore-challenge. Berlin Heidelberg: Springer; 2010. p. 131–42.

[20] Bilgic Berkin, Horn Berthold KP, Masaki Ichiro. Efficient integral image
computation on the GPU. In: Intelligent vehicles symposium (IV). IEEE; 2010.

[21] Shams Ramtin et al. A survey of medical image registration on multicore and
the GPU. Signal Process Mag, IEEE 2010;27(2):50–60.

[22] Sakr Fatma Zaky, Taher Mohammed, Wahba Ayman M. High performance iris
recognition system on GPU. In: Computer engineering & systems (ICCES), 2011
international conference. IEEE; 2011.

[23] Taher Mohamed. Accelerating scientific applications using GPU’s. In: Design
and test workshop (IDT), 2009 4th international. IEEE; 2009.

[24] Zhu Weihang. Massively parallel differential evolution—pattern search
optimization with graphics hardware acceleration: an investigation on
bound constrained optimization problems. J Global Optim 2011;50(3):417–37.
Please cite this article in press as: Yousef AH, Abdelmunim HE. An accelerated s
Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.11.002
[25] Zhu Weihang, Curry James. Multi-walk parallel pattern search approach on a
GPU computing platform. In: Computational science–ICCS 2009. Berlin
Heidelberg: Springer; 2009. p. 984–93.

[26] The Global Optimization Toolbox User’s Guide – MathWorks,
<in.mathworks.com/help/pdf_doc/gads/gads_tb.pdf>, Last Accessed May
19th, 2015.

[27] El Munim Hossam E Abd, Farag Amal A. Shape representation and registration
in vector implicit spaces: adopting a closed-form solution in the optimization
process. Pattern Anal Mach Intell, IEEE Trans 2013;35(3):763–8.

[28] AboelGhar Mohamed. A kidney segmentation approach from DCE-MRI using
level sets. In: IEEE computer society conference on computer vision and
pattern recognition workshops.

[29] https://blogs.msdn.microsoft.com/nativeconcurrency/2012/04/12/what-is-
vectorization/, last accessed: 14/10/2016.

Ahmed Hassan Yousef is an associate professor in the
Computers and Systems Engineering Department, Ain
Shams University since 2009. He is the vice director of
the Knowledge and Electronic Service Center (EKSC),
Supreme Council of Universities, Egypt. He got his Ph.D.,
M.Sc. and B.Sc. from Ain Shams University in 2004,
2000, 1995 respectively. He works also as the vice
chairman of the IEEE, Egypt section. His research
interests include Parallel Programming, Image Process-
ing, Data Mining, Software Engineering, Programming
Languages, Artificial Intelligence and Automatic Control,
Technology in Education.
Hossam Eldin Hassan AbdelMunim is an associate
professor in the Computers and Systems Engineering
Department, Ain Shams University since 2013. He is the
director of the Information Technology unit in the Fac-
ulty of Engineering, Ain Shams University, Egypt. He got
his Ph.D. from the United States in 2007, and got his M.
Sc. and B.Sc. from Ain Shams University in 2000, 1995
respectively. His research interests include Parallel
Programming, Image Processing, Computer Vision,
Medical Imaging, Visualization.
hape based segmentation approach adopting the pattern search optimizer.

http://refhub.elsevier.com/S2090-4479(16)30152-6/h0025
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0025
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0025
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0030
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0030
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0030
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0035
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0035
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0040
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0040
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0045
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0045
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0045
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0050
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0050
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0055
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0055
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0055
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0060
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0060
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0065
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0065
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0075
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0075
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0075
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0080
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0080
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0085
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0085
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0090
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0090
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0090
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0095
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0095
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0100
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0100
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0105
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0105
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0110
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0110
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0110
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0115
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0115
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0120
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0120
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0120
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0125
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0125
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0125
http://www.in.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0135
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0135
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0135
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0140
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0140
http://refhub.elsevier.com/S2090-4479(16)30152-6/h0140
https://blogs.msdn.microsoft.com/nativeconcurrency/2012/04/12/what-is-vectorization/
https://blogs.msdn.microsoft.com/nativeconcurrency/2012/04/12/what-is-vectorization/
http://dx.doi.org/10.1016/j.asej.2016.11.002

	An accelerated shape based segmentation approach adopting the pattern search optimizerPlease check the inserted running head and correct if necessary. --
	1 Introduction
	2 Background
	2.1 Shape based segmentation problem
	2.1.1 Shape representation [27,28]
	2.1.2 Global registration of shapes
	2.1.3 Model-based boundary detection

	2.2 Global optimization algorithms [26]
	2.3 GPU Architecture and problem characteristics

	3 Methodology
	3.1 Performance criteria and problem constrains
	3.2 Detailed implementation
	3.3 Environment and used tools
	3.4 Objective function implementation on the GPU

	4 Result and discussion
	4.1 Using vectorization and CUDA on the objective function
	4.2 Comparing proposed solution to genetic algorithms with different population size
	4.3 Comparing proposed solution to the parallel CPU implementation
	4.4 Proposed solution performance comparison on different GPUS

	5 Conclusion and future work
	References

