65 research outputs found

    Molecular and functional characteristics of seven-transmembrane-domain receptor APJ

    Get PDF
    APJ is a member of seven-transmembrane-domain receptors, but its ligand had not been identified for a long time. I prepared CHO cells expressing APJ (CHO-A10 cells), and searched for the endogenous ligand for APJ by monitoring specific signal transduction in CHO-A10 cells. ...Thesis (Ph. D. in Science)--University of Tsukuba, (B), no. 1690, 2001.1.31Includes bibliographical referencesTitlepage,Tble of Contents -- Summary,Abbreviations -- Introduction -- Materials and Methods -- Results -- Discussion -- Ackknowledgements,References -- Table,Figures and Figure Legend

    Clinical course and background of nasopharyngeal antibiotic-resistant bacteria carriers among preschool children hospitalized for lower respiratory tract infection

    Get PDF
    Abstract We investigated the nasopharyngeal microbiota in preschool patients hospitalized with lower respiratory tract infection to clarify the relationships between culturable nasopharyngeal bacteria and prognosis. From 2016 to 2018, nasopharyngeal culture was performed on inpatients under 6 years of age with a lower respiratory tract infection. Among the 1,056 study patients, 1,046 provided nasopharyngeal samples that yielded positive cultures, yielding 1,676 isolated strains. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis, were isolated in 25%, 27%, and 31% of the samples, respectively, and were the major causes of respiratory tract infection in these children. The only factor associated with the isolation of antibiotic-resistant strains from the nasopharynx was daycare attendance, which did not affect clinical severity, such as duration of fever and hospitalization. This study demonstrated that resistant bacteria in the nasopharynx did not affect the severity of lower respiratory tract infection and supports the use of narrow-spectrum antimicrobial agents in accordance with published guidelines when initiating therapy for pediatric patients with community-acquired pneumonia

    A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud

    Get PDF
    AbstractMammal–fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements

    Transcriptional repression by MYB3R proteins regulates plant organ growth

    Get PDF
    In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size

    High-resolution photoelectron spectroscopy study of Kondo metals : SmSn3 and Sm0.9La0.1Sn3

    Get PDF
    We performed a high-resolution photoelectron spectroscopy study on the Kondo metals SmSn3 and Sm0.9La0.1Sn3. The experimental results are compared with calculations of density of state performed within the local density approximation plus the dynamical mean-field theory. The theory is found to reproduce the experimental valence-band spectra well. In both SmSn3 and Sm0.9La0.1Sn3 the bulk Sm valence is nearly trivalent, with a small fraction of divalent component. Resonant photoelectron spectroscopy indicates a decrease in the Kondo effect in the diluted system Sm0.9La0.1Sn3

    Establishment of a Method tao Culture a Washed and Cloned Green Paramecium (Paramecium bursaria)

    Get PDF
    The green paramecium, Paramecium bursaria , widely distributed in freshwater habitats around the world, has hundreds of symbiotic green algae in its cytoplasm. P. bursaria is classified as a paramecium, a species of ciliate. Symbiotic algae cannot exist inside paramecia other than P. bursaria , like as P. tetraurelia or P. caudatum . Much interest has been accumulating in elucidating the symbiotic mechanism of symbiotic algae that can exist only inside P. bursaria . However, the basic properties related to P. bursaria and symbiotic algae have not yet been fully elucidated. Are the species of symbiotic algae in P. bursaria uniform or diverse? Are the symbiotic microorganisms in P. bursaria symbiotic algae only? Does each individual P. bursaria show physiologically similar properties regarding the rate and frequency of cell division and also in terms of longevity? Actually, many things described above still remain unanswered. In this study, after isolating, washing and cloning P. bursaria , the rate of proliferation was measured for individual cells. Although each cloned strain should have the same genetic background, we obtained interesting results showing that the proliferation rates were significantly varied among the strains.Full-Length PaperBy a grant from Research Institute for Integrated Science, Kanagawa Universit

    The Kinase Inhibitor SFV785 Dislocates Dengue Virus Envelope Protein from the Replication Complex and Blocks Virus Assembly

    Get PDF
    Dengue virus (DENV) is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and describe here the characterization of a kinase inhibitor (SFV785), which has selective effects on NTRK1 and MAPKAPK5 kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex. Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785 inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to explore the DENV lifecycle and could also represent a new class of anti-virals

    Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery

    No full text
    Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers
    corecore