26 research outputs found

    Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    Get PDF
    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane

    Improvement of Diabetes Mellitus Symptoms by Intake of Ninjin'yoeito

    Get PDF
    Diabetes mellitus is a well-known common disease and one of the most serious social problems in the worldwide. Although various types of drugs are developed, the number of patients suffering from diabetes mellitus is still increasing. Ninjin'yoeito (NYT) is one of formulas used in Japanese traditional herbal medicines for improving various types of metabolic disorders. However, the effect of NYT on diabetes mellitus has not yet been investigated. In the present study, we tried to clarify the action of NYT on the serum glucose level in streptozotocin (STZ)-induced diabetic mice. We found that intake of NYT decreased the serum glucose level and increased insulin sensitivity in STZ-induced diabetic mice. NYT treatment also improved acidification of the interstitial fluid around skeletal muscles found in STZ-induced diabetic mice, while the interstitial fluid acidification has been reported to cause insulin resistance. Furthermore, in the proximal colon of STZ-induced diabetic mice, NYT treatment showed a tendency to increase the expression of sodium-coupled monocarboxylate transporter 1 (SMCT1), which has ability to absorb weak organic acids (pH buffer molecules) resulting in improvement of the interstitial fluid acidification. Based on these observations, the present study suggests that NYT is a useful formula to improve hyperglycemia and insulin resistance via elevation of interstitial fluid pH in diabetes mellitus, which might be caused by increased absorption of pH buffer molecules (SMCT1 substrates, weak organic acids) mediated through possibly elevated SMCT1 expression in the proximal colon

    Successful Incorporation of Exosome-Capturing Antibody-siRNA Complexes into Multiple Myeloma Cells and Suppression of Targeted mRNA Transcripts

    No full text
    Nucleic acid medicines have been developed as new therapeutic agents against various diseases; however, targeted delivery of these reagents into cancer cells, particularly hematologic cancer cells, via systemic administration is limited by the lack of efficient and cell-specific delivery systems. We previously demonstrated that monoclonal antibody (mAb)-oligonucleotide complexes targeting exosomal microRNAs with linear oligo-D-arginine (Arg) linkers were transferred into solid cancer cells and inhibited exosomal miRNA functions. In this study, we developed exosome-capturing anti-CD63 mAb-conjugated small interfering RNAs (siRNAs) with branched Arg linkers and investigated their effects on multiple myeloma (MM) cells. Anti-CD63 mAb-conjugated siRNAs were successfully incorporated into MM cells. The incorporation of exosomes was inhibited by endocytosis inhibitors. We also conducted a functional analysis of anti-CD63 mAb-conjugated siRNAs. Ab-conjugated luciferase+ (luc+) siRNAs significantly decreased the luminescence intensity in OPM-2-luc+ cells. Moreover, treatment with anti-CD63 mAb-conjugated with MYC and CTNNB1 siRNAs decreased the mRNA transcript levels of MYC and CTNNB1 to 52.5% and 55.3%, respectively, in OPM-2 cells. In conclusion, exosome-capturing Ab-conjugated siRNAs with branched Arg linkers can be effectively delivered into MM cells via uptake of exosomes by parental cells. This technology has the potential to lead to a breakthrough in drug delivery systems for hematologic cancers

    Plasma membrane anchored nanosensor for quantifying endogenous production of H2O2 in living cells

    No full text
    Hydrogen peroxide (H2O2) is one of the main second messengers involved in signaling pathways controlling cell metabolism. During tumorigenesis H2O2 is generated on the extracellular space by membrane-associated NADPH oxidases and superoxide dismutase to stimulate cell proliferation and preservation of the transformed state. Accordingly, a characteristic feature of malignant cells is overproduction of H2O2 in the extracellular milieu and the subsequent absorption in the cytosol. Since the most significant gradients of endogenous extracellular H2O2 can be observed only in a very shallow region of the fluid in contact with the plasma membrane, we show here the use of a newly designed nanosensor anchored to the outer cell surface and capable of quantifying H2O2 at nanometer distance from the membrane proteins responsible for its production. This biosensor is built upon gold nanoparticles functionalized with a H2O2-sensitive boronate compound that is probed using surface enhanced Raman spectroscopy (SERS). The highly localized information obtained on the cell surface by SERS analysis is combined with analytical methods of redox biology to estimate the associated levels of intracellular H2O2 responsible for cell signaling. The results obtained from A549 lung cancer cell line show localized spots on the cell surface at concentration up to 12 mu M, associated to intracellular concentration up to 5.1 nM

    Seihai-to (TJ-90)-Induced Activation of Airway Ciliary Beatings of Mice: Ca2+ Modulation of cAMP-Stimulated Ciliary Beatings via PDE1

    No full text
    Sei-hai-to (TJ-90, Qing Fei Tang), a Chinese traditional medicine, increases ciliary beat frequency (CBF) and ciliary bend angle (CBA) mediated via cAMP (3′,5′-cyclic adenosine monophosphate) accumulation modulated by Ca2+-activated phosphodiesterase 1 (PDE1A). A high concentration of TJ-90 (≥40 μg/mL) induced two types of CBF increases, a transient increase (an initial increase, followed by a decrease) and a sustained increase without any decline, while it only sustained the CBA increase. Upon inhibiting increases in intracellular Ca2+ concentration ([Ca2+]i) by 10 μM BAPTA-AM (Ca2+-chelator, 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) or Ca2+/calmodulin-dependent PDE1 by 8MmIBMX (a selective PDE1 inhibitor), TJ-90 (400 μg/mL) induced only the sustained CBF increase without any transient CBF increase. The two types of the CBF increase (the transient increase and the sustained increase) induced by TJ-90 (≥40 μg/mL) were mimicked by the stimulation with both procaterol (100 pM) and ionomycin (500 nM). Thus, TJ-90 stimulates small increases in the intracellular cAMP concentration ([cAMP]i) and [Ca2+]i in airway ciliary cells of mice. These small increases in [cAMP]i and [Ca2+]i cause inducing a transient CBF increase or a sustained CBF increase in an airway ciliary cells, depending on the dominant signal, Ca2+-signal, or cAMP-signal

    Effects of strategies targeting V-ATPase in rhabdospheres.

    No full text
    <p>(A) Percentage of cell growth inhibition of rhabdospheres and RD cells after treatment with AO at different concentrations evaluated by viable cell counting with respect to untreated cells. (B) Percentage of cell viability inhibition after treatment with OME at different concentrations with respect to untreated cells, evaluated by the acid phosphatase indirect assay (*p<0.05 spheres <i>vs</i> RD and #p<0.05 spheres or RD <i>vs</i> untreated). (C) Cell number evaluated by dye exclusion assay after OME treatment. *p<0.05. (D) Hoechst 33258 staining to evaluate apoptosis of rhabdosphere cells after OME treatment. Representative pictures. Scale bar 50<b> µ</b>m. (E) Cell cycle distribution of rhabdosphere cells by flow cytometry after OME treatment. Left, representative images of double stained cells indicating the total content of DNA (Propidium Iodide, X-axis) and Bromodeoxyuridine (BrdU) incorporation into newly synthesized DNA by proliferating cells during S-phase (BrdU-FITC, Y-axis). Right, graph of the percentages (*p = <0.05).</p

    Raman micro-spectroscopy as a viable tool to monitor and estimate the ionic transport in epithelial cells

    No full text
    The typical response to the lowering of plasma Na-vertical bar concentration and blood pressure in our body involves the release of aldosterone from the adrenal glands, which triggers the reabsorption of sodium in the kidney. Although the effects of aldosterone on this physiological mechanism were extensively studied in the past decades, there are still some aspects to be fully elucidated. In the present study, we propose for the first time a new approach based on Raman spectroscopy to monitor the ionic activity in aldosterone-treated A6 renal epithelial cells. This spectroscopic technique is capable of probing the cells through their thickness in a non-destructive and nimble way. The spectroscopic variations of the Raman bands associated to the O-H stretching of water were correlated to the variations of ionic concentration in the intracellular and extracellular fluids. The increase of Na+ concentration gradients was clearly visualized in the cytosol of aldosterone-treated cells. The enhancement of the Na+ current density induced by aldosterone was estimated from the variation of the ionic chemical potential across the intracellular space. In addition, the variation of the O-H Raman bands of water was used to quantify the cell thickness, which was not affected by aldosterone
    corecore