12 research outputs found

    Silver nanomaterials for wound dressing applications.

    Get PDF
    Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately

    Effect of biosynthesized silver nanoparticles on bacterial biofilm changes in S. aureus and E. coli.

    Get PDF
    One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 μg/mL and 20 ± 5, 15 + 5, 15 + 5 μg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica

    Copper Concentrations in Breast Cancer: A Systematic Review and Meta-Analysis

    Get PDF
    Breast cancer is the most common neoplasm, comprising 16 of all women's cancers worldwide. Research of Copper (Cu) concentrations in various body specimens have suggested an association between Cu levels and breast cancer risks. This systematic review and meta-analysis summarize the results of published studies and examine this association. We searched the databases PubMed, Scopus, Web of Science, and Google Scholar and the reference lists of relevant publications. The Standardized Mean Differences (SMDs) between Cu levels in cancer cases and controls and corresponding Confidence Intervals (CIs), as well as I-2 statistics, were calculated to examine heterogeneity. Following the specimens used in the original studies, the Cu concentrations were examined in three subgroups: serum or plasma, breast tissue, and scalp hair. We identified 1711 relevant studies published from 1984 to 2017. There was no statistically significant difference between breast cancer cases and controls for Cu levels assayed in any studied specimen; the SMD (95 CI) was -0.01 (-1.06 - 1.03; P = 0.98) for blood or serum, 0.51 (-0.70 - 1.73; P = 0.41) for breast tissue, and -0.88 (-3.42 - 1.65; P = 0.50) for hair samples. However, the heterogeneity between studies was very high (P < 0.001) in all subgroups. We did not find evidence for publication bias (P = 0.91). The results of this meta-analysis do not support an association between Cu levels and breast cancer. However, due to high heterogeneity in the results of original studies, this conclusion needs to be confirmed by well-designed prospective studies

    Nano-selenium and its nanomedicine applications: a critical review

    No full text
    Bozena Hosnedlova,1 Marta Kepinska,2 Sylvie Skalickova,3 Carlos Fernandez,4 Branislav Ruttkay-Nedecky,3 Qiuming Peng,5 Mojmir Baron,1 Magdalena Melcova,6 Radka Opatrilova,3 Jarmila Zidkova,6 Geir Bj&oslash;rklund,7 Jiri Sochor,1 Rene Kizek2,3 1Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic; 2Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; 3Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; 4School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK; 5State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, People&rsquo;s Republic of China; 6Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic; 7Council for Nutritional and Environmental Medicine, Rana, Norway Abstract: Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration. Keywords: nanoparticles, biomedicine, drug delivery, oxidative stress, anticancer effect, antimicrobial activity, protective effec

    Electrochemical sensors and biosensors for identification of viruses: a critical review.

    No full text
    Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020–2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method’s sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work
    corecore