5,160 research outputs found
Three Dimensional Evolution of a Relativistic Current Sheet : Triggering of Magnetic Reconnection by the Guide Field
The linear and non-linear evolution of a relativistic current sheet of pair
() plasmas is investigated by three-dimensional particle-in-cell
simulations. In a Harris configuration, it is obtained that the magnetic energy
is fast dissipated by the relativistic drift kink instability (RDKI). However,
when a current-aligned magnetic field (the so-called "guide field") is
introduced, the RDKI is stabilized by the magnetic tension force and it
separates into two obliquely-propagating modes, which we call the relativistic
drift-kink-tearing instability (RDKTI). These two waves deform the current
sheet so that they trigger relativistic magnetic reconnection at a crossover
thinning point. Since relativistic reconnection produces a lot of non-thermal
particles, the guide field is of critical importance to study the energetics of
a relativistic current sheet.Comment: 12 pages, 4 figures; fixed typos and added a footnote [24
Primeiro estudo sobre protozoários e metazoários parasitando Hemibrycon surinamesis (Characidae).
PAR052
First study on parasites of Hemibrycon surinamensis (Characidae), a host from the eastern Amazon region.
This study was the first investigation of communities and infracommunities of parasites of Hemibrycon surinamensis. All the fish collected in a tributary of the Amazon river were parasitized by one or more parasite species. The Brillouin diversity index (HB) was 0.46 ± 0.28 and the mean species richness was 3.5 ± 1.2 parasites per host. A total of 14,734 parasites were collected, including Ichthyophthirius multifiliis and Piscinoodinium pillulare (Protozoa); Jainus hexops and Tereancistrum sp. (Monogenoidea); Ergasilus turucuyus and Argulus sp. (Crustacea); metacercariae of Derogenidae gen. sp.; metacercariae and adults of Genarchella genarchella (Digenea); and Cucullanus larvae and Contracaecum larvae (Nematoda). The dominant parasite was I. multifiliis, followed by P. pillulare. The parasites showed aggregated dispersion, except for E. turucuyus, which had random dispersion. The condition factor (Kn) indicated that the parasitism levels had not affected host body condition. The high levels of infection observed were due to host behavior, and this was discussed. This was the first report of I. multifiliis, P. pillulare, Argulus sp., E. turucuyus, G. genarchella, J. hexops and Tereancistrum sp. in H. surinamensis, and it expanded the occurrence of E. turucuyus and G. genarchella to the eastern Amazon region
Mass singularity and confining property in
We discuss the properties of the position space fermion propagator in three
dimensional QED which has been found previouly based on Ward-Takahashi-identity
for soft-photon emission vertex and spectral representation.There is a new type
of mass singularity which governs the long distance behaviour.It leads the
propagator vanish at large distance.This term corresponds to dynamical mass in
position space.Our model shows confining property and dynamical mass generation
for arbitrary coupling constant.Since we used dispersion retation in deriving
spectral function there is a physical mass which sets a mass scale.For finite
cut off we obtain the full propagator in the dispersion integral as a
superposition of different massses.Low energy behaviour of the proagator is
modified to decrease by position dependent mass.In the limit of zero infrared
cut-off the propagator vanishes with a new kind of infrared behaviour.Comment: 22pages,4figures,revtex4,Notational sloppiness are crrected.Submitted
to JHE
Relativistic Particle Acceleration in a Folded Current Sheet
Two-dimensional particle simulations of a relativistic Harris current sheet
of pair plasmashave demonstrated that the system is unstable to the
relativistic drift kink instability (RDKI) and that a new kind of acceleration
process takes place in the deformed current sheet. This process contributes to
the generation of non-thermal particles and contributes to the fast magnetic
dissipation in the current sheet structure. The acceleration mechanism and a
brief comparison with relativistic magnetic reconnection are presented.Comment: 11 preprint pages, including 3 .eps figure
Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas
We study linear and nonlinear development of relativistic and
ultrarelativistic current sheets of pair plasmas with antiparallel magnetic
fields. Two types of two-dimensional problems are investigated by
particle-in-cell simulations. First, we present the development of relativistic
magnetic reconnection, whose outflow speed is an order of the light speed c. It
is demonstrated that particles are strongly accelerated in and around the
reconnection region, and that most of magnetic energy is converted into
"nonthermal" part of plasma kinetic energy. Second, we present another
two-dimensional problem of a current sheet in a cross-field plane. In this
case, the relativistic drift kink instability (RDKI) occurs. Particle
acceleration also takes place, but the RDKI fast dissipates the magnetic energy
into plasma heat. We discuss the mechanism of particle acceleration and the
theory of the RDKI in detail. It is important that properties of these two
processes are similar in the relativistic regime of T > mc^2, as long as we
consider the kinetics. Comparison of the two processes indicates that magnetic
dissipation by the RDKI is more favorable process in the relativistic current
sheet. Therefore the striped pulsar wind scenario should be reconsidered by the
RDKI.Comment: To appear in ApJ vol. 670; 60 pages, 27 figures; References and typos
are fixe
Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems
This paper clarifies the microscopic nature of the staggered scalar order,
which is specific to even number of f electrons per site. In such systems,
crystalline electric field (CEF) can make a singlet ground state. As exchange
interaction with conduction electrons increases, the CEF singlet at each site
gives way to Kondo singlets. The collective Kondo singlets are identified with
itinerant states that form energy bands. Near the boundary of itinerant and
localized states, a new type of electronic order appears with staggered Kondo
and CEF singlets. We present a phenomenological three-state model that
qualitatively reproduces the characteristic phase diagram, which have been
obtained numerically with use of the continuous-time quantum Monte Carlo
combined with the dynamical mean-field theory. The scalar order observed in
PrFe_4P_{12} is ascribed to this staggered order accompanying charge density
wave (CDW) of conduction electrons. Accurate photoemission and tunneling
spectroscopy should be able to probe sharp peaks below and above the Fermi
level in the ordered phase.Comment: 7 pages, 8 figure
Pressure Field Visualization on the Surface of a Square Cylinder with Pressure Sensitive Paints
Pressure Sensitive Paints (PSP) are one of the breakthrough technologies for the measurement of aerodynamic sound from automobiles. Potential problems in applying Pressure Sensitive Paints to automobiles are low time resolution and less accuracy in the low-speed flow field. In this investigation, we attempted to improve the accuracy of PSP in a low-speed flow. A suction-type wind tunnel, which has a square test section of 75 mm by 150 mm, was developed to remove the influence of temperature differences during the wind tunnel experiments. A carefully selected array of ultraviolet LEDs was utilised as a lighting system to match the effective excitation wavelength of the developed PSP (390 nm). The surface pressure of a square cylinder was measured at velocity range from 35 m/s to 75 m/s with PSP and a conventional pressure sensor. The experimental data were compared with the results of conventional pressure measurements and numerical simulations. The experimental results showed that the accuracy of the PSP was about 10% at the velocities of 65 m/s or higher. The pressure profiles can be clearly observed at the uniform velocity of 75 m/s. Conversely, accuracy within the 35 m/s to 55 m/s velocity range was not high enough because of insufficient CCD camera resolution. Despite large error values, the colour depths of the luminescence image were almost identical for the same experimental conditions. This indicated that the calibration coefficients of the Stern-Volmer relation were almost constant during the experiments. It revealed that the suction-type wind tunnel is suitable for PSP measurements
- …