6,743 research outputs found
Vibrationally resolved partial cross sections and asymmetry parameters for carbon K-shell photoionization of the CO_2 molecule
We have measured the vibrationally resolved partial cross sections \sigma_{v_1^{\prime}} and asymmetry parameters \beta_{v_1^{\prime}} for C K-shell photoionization of the CO2 molecule in the Σu shape resonance region above the C K-shell ionization threshold. The positions of both the maxima of \sigma_{v_1^{\prime}} and the minima of \beta_{v_1^{\prime}} move towards the C K-shell threshold with increasing symmetric stretching vibrational excitation v'1 in the C 1s single-hole state. Calculations employing the relaxed-core Hartree–Fock approach reproduce the observed vibrational effects
Properties of the cosmological filament between two clusters: A possible detection of a large-scale accretion shock by
We report on the results of a observation of the plasma in the
filament located between the two massive clusters of galaxies Abell 399 and
Abell 401. Abell 399 (=0.0724) and Abell 401 (=0.0737) are expected to be
in the initial phase of a cluster merger. In the region between the two
clusters, we find a clear enhancement in the temperature of the filament plasma
from 4 keV (expected value from a typical cluster temperature profile) to
6.5 keV. Our analysis also shows that filament plasma is present out to
a radial distance of 15' (1.3 Mpc) from a line connecting the two clusters. The
temperature profile is characterized by an almost flat radial shape with
6-7 keV within 10' or 0.8 Mpc. Across =8'~from the axis, the
temperature of the filament plasma shows a drop from 6.3 keV to 5.1 keV,
indicating the presence of a shock front. The Mach number based on the
temperature drop is estimated to be 1.3. We also successfully
determined the abundance profile up to 15' (1.3 Mpc), showing an almost
constant value (=0.3 solar) at the cluster outskirt. We estimated the
Compton -parameter to be 14.5, which is in
agreement with 's results (14-17 on the filament). The
line of sight depth of the filament is 1.1 Mpc, indicating that the
geometry of filament is likely a pancake shape rather than cylindrical. The
total mass of the filamentary structure is 7.7. We discuss a possible interpretation of the drop of X-ray emission
at the rim of the filament, which was pushed out by the merging activity and
formed by the accretion flow induced by the gravitational force of the
filament.Comment: 8 pages, 8 figures, accepted for publication in A&
Innate immunity and adjuvants
Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection
A critical Mach number for electron injection in collisionless shocks
Electron acceleration in collisionless shocks with arbitrary magnetic field
orientations is discussed. It is shown that the injection of thermal electrons
into diffusive shock acceleration process is achieved by an electron beam with
a loss-cone in velocity space that is reflected back upstream from the shock
through shock drift acceleration mechanism. The electron beam is able to excite
whistler waves which can scatter the energetic electrons themselves when the
Alfven Mach number of the shock is sufficiently high. A critical Mach number
for the electron injection is obtained as a function of upstream parameters.
The application to supernova remnant shocks is discussed.Comment: 4 pages, 2 figure, accepted for publication in Physical Review
Letter
THREE TECHNIQUES OF SKI JUMP TAKE-OFF MODELED BY CHANGES OF JOINT ANGLE
INTRODUCTION: In ski jumping, take-off action is the most important factor for ascent force. Jumpers should aim for optimum movements of the joints, because reaction force is the result of the integrated kinetic parameters of each joint or segment. In our recent studies, three techniques of take-off action were classified by manner of joint power generation. However, such kinetic parameters are difficult to explain in coaching situations. It would be more useful for coaching to represent the three techniques of take-off action by joint angle rather than joint power. The purpose of this study is to establish visual models of ski jump take-off action of world class jumpers based on changes of joint angle which would be especially useful in coaching.
METHOD: The take-off actions were analyzed from videos taken at Hakuba Intercontinental Cup summer competition at 1997. Camera speed was 240 frames per second. The data from the videos were collected by computer. An inverse kinematics solution was applied to analysis. Jump performance of four jumpers, who received first prize in the team competition of Nagano Olympic games, was analyzed.
RESULTS: The maximum value of angular velocity in the thigh was observed at close to the take-off platform edge in all jumpers. Peak angular velocity in the thigh was larger than in the trunk segment. The action at the hip joint represented the characteristics of jumping techniques rather than the action at the knee joint.
The technique was classified by three manners of angular velocity. The three types of jump action were represented simply as visual models. In the technique of Type-A, motion was observed with regular order in each joint. The angular velocity of the trunk stayed at 2 rad/sec until the thigh’s angular velocity’s appearance. Type-A can be defined simply as an action moving from hip to knee joint. In technique Type-B, the angular velocity in the thigh was 4 rad/sec, higher than in the trunk at the initial jump action, and after some delay, the value in the trunk raised up from a negative value. Action Type-B can be defined simply as moving from knee to hip joint. In the last technique, Type-C, both the trunk and thigh angular velocities increased synchronously. Both hip and knee joints were extended at the same time. Type-C can be defined simply as the technique of synchronous movement at the knee and hip joint. These motions classified by changes of joint angle were shown by three visual models from Type-A to C.
CONCLUSION: Three types of jump action could be represented simply by joint angle as visual models. There are advantages and risks involving jump hieght and the amount of body area subjected to aerodynamic drag force associated with each technique
- …