318 research outputs found

    A Critical Review of "Automatic Patch Generation Learned from Human-Written Patches": Essay on the Problem Statement and the Evaluation of Automatic Software Repair

    Get PDF
    At ICSE'2013, there was the first session ever dedicated to automatic program repair. In this session, Kim et al. presented PAR, a novel template-based approach for fixing Java bugs. We strongly disagree with key points of this paper. Our critical review has two goals. First, we aim at explaining why we disagree with Kim and colleagues and why the reasons behind this disagreement are important for research on automatic software repair in general. Second, we aim at contributing to the field with a clarification of the essential ideas behind automatic software repair. In particular we discuss the main evaluation criteria of automatic software repair: understandability, correctness and completeness. We show that depending on how one sets up the repair scenario, the evaluation goals may be contradictory. Eventually, we discuss the nature of fix acceptability and its relation to the notion of software correctness.Comment: ICSE 2014, India (2014

    The Arches Cluster: Extended Structure and Tidal Radius

    Full text link
    At a projected distance of ~26 pc from Sgr A*, the Arches cluster provides insight to star formation in the extreme Galactic Center (GC) environment. Despite its importance, many key properties such as the cluster's internal structure and orbital history are not well known. We present an astrometric and photometric study of the outer region of the Arches cluster (R > 6.25") using HST WFC3IR. Using proper motions we calculate membership probabilities for stars down to F153M = 20 mag (~2.5 M_sun) over a 120" x 120" field of view, an area 144 times larger than previous astrometric studies of the cluster. We construct the radial profile of the Arches to a radius of 75" (~3 pc at 8 kpc), which can be well described by a single power law. From this profile we place a 3-sigma lower limit of 2.8 pc on the observed tidal radius, which is larger than the predicted tidal radius (1 - 2.5 pc). Evidence of mass segregation is observed throughout the cluster and no tidal tail structures are apparent along the orbital path. The absence of breaks in the profile suggests that the Arches has not likely experienced its closest approach to the GC between ~0.2 - 1 Myr ago. If accurate, this constraint indicates that the cluster is on a prograde orbit and is located front of the sky plane that intersects Sgr A*. However, further simulations of clusters in the GC potential are required to interpret the observed profile with more confidence.Comment: 24 pages (17-page main text, 7-page appendix), 24 figures, accepted to Ap

    The Quintuplet Cluster: Extended Structure and Tidal Radius

    Full text link
    The Quintuplet star cluster is one of only three known young (<10<10 Myr) massive (M >104>10^4 M_\odot) clusters within 100\sim100 pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze the Quintuplet's dynamical structure. Using the HST WFC3-IR instrument, we take astrometric and photometric observations of the Quintuplet covering a 120×120120''\times120'' field-of-view, which is 1919 times larger than those of previous proper motion studies of the Quintuplet. We generate a catalog of the Quintuplet region with multi-band, near-infrared photometry, proper motions, and cluster membership probabilities for 10,54310,543 stars. We present the radial density profile of 715715 candidate Quintuplet cluster members with M4.7M\gtrsim4.7 M_\odot out to 3.23.2 pc from the cluster center. A 3σ3\sigma lower limit of 33 pc is placed on the tidal radius, indicating the lack of a tidal truncation within this radius range. Only weak evidence for mass segregation is found, in contrast to the strong mass segregation found in the Arches cluster, a second and slightly younger massive cluster near the Galactic Center. It is possible that tidal stripping hampers a mass segregation signature, though we find no evidence of spatial asymmetry. Assuming that the Arches and Quintuplet formed with comparable extent, our measurement of the Quintuplet's comparatively large core radius of 0.620.10+0.100.62^{+0.10}_{-0.10} pc provides strong empirical evidence that young massive clusters in the Galactic Center dissolve on a several Myr timescale.Comment: 25 pages (21-page main text, 4-page appendix), 18 figures, submitted to Ap

    Quantitative Spectroscopy of Blue Supergiants in Metal-Poor Dwarf Galaxy NGC 3109

    Full text link
    We present a quantitative analysis of the low-resolution (4.5 A) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent temperature indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B type BSGs analyzed by Evans et al. (2007) to derive the distance to NGC 3109 using the Flux-weighted Gravity-Luminosity Relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [Z] = -0.67 +/- 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. (2007) based on the oxygen abundances of early-B supergiants ([Z] = -0.93 +/- 0.07), suggesting a low alpha/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of HII regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 +/- 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch (TRGB) distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.Comment: 50 pages, 23 figures; Accepted for publication in The Astrophysical Journa

    An Adaptive Optics Survey of Stellar Variability at the Galactic Center

    Get PDF
    We present a 11.5\approx 11.5 year adaptive optics (AO) study of stellar variability and search for eclipsing binaries in the central 0.4\sim 0.4 pc (10\sim 10'') of the Milky Way nuclear star cluster. We measure the photometry of 563 stars using the Keck II NIRC2 imager (KK'-band, λ0=2.124 μm\lambda_0 = 2.124 \text{ } \mu \text{m}). We achieve a photometric uncertainty floor of ΔmK0.03\Delta m_{K'} \sim 0.03 (3%\approx 3\%), comparable to the highest precision achieved in other AO studies. Approximately half of our sample (50±2%50 \pm 2 \%) shows variability. 52±5%52 \pm 5\% of known early-type young stars and 43±4%43 \pm 4 \% of known late-type giants are variable. These variability fractions are higher than those of other young, massive star populations or late-type giants in globular clusters, and can be largely explained by two factors. First, our experiment time baseline is sensitive to long-term intrinsic stellar variability. Second, the proper motion of stars behind spatial inhomogeneities in the foreground extinction screen can lead to variability. We recover the two known Galactic center eclipsing binary systems: IRS 16SW and S4-258 (E60). We constrain the Galactic center eclipsing binary fraction of known early-type stars to be at least 2.4±1.7%2.4 \pm 1.7\%. We find no evidence of an eclipsing binary among the young S-stars nor among the young stellar disk members. These results are consistent with the local OB eclipsing binary fraction. We identify a new periodic variable, S2-36, with a 39.43 day period. Further observations are necessary to determine the nature of this source.Comment: 69 pages, 28 figures, 12 tables. Accepted for publication in The Astrophysical Journa

    Measuring the Orbits of the Arches and Quintuplet Clusters using HST and Gaia: Exploring Scenarios for Star Formation Near the Galactic Center

    Full text link
    We present new absolute proper motion measurements for the Arches and Quintuplet clusters, two young massive star clusters near the Galactic center. Using multi-epoch HST observations, we construct proper motion catalogs for the Arches (\sim35,000 stars) and Quintuplet (\sim40,000 stars) fields in ICRF coordinates established using stars in common with the Gaia EDR3 catalog. The bulk proper motions of the clusters are measured to be (μα\mu_{\alpha*}, μδ\mu_{\delta}) = (-0.80 ±\pm 0.032, -1.89 ±\pm 0.021) mas/yr for the Arches and (μα\mu_{\alpha*}, μδ\mu_{\delta}) = (-0.96 ±\pm 0.032, -2.29 ±\pm 0.023) mas/yr for the Quintuplet, achieving \sim5x higher precision than past measurements. We place the first constraints on the properties of the cluster orbits that incorporate the uncertainty in their current line-of-sight distances. The clusters will not approach closer than \sim25 pc to SgrA*, making it unlikely that they will inspiral into the Nuclear Star Cluster within their lifetime. Further, the cluster orbits are not consistent with being circular; the average value of rapo_{apo} / rperi_{peri} is \sim1.9 (equivalent to eccentricity of \sim0.31) for both clusters. Lastly, we find that the clusters do not share a common orbit, challenging one proposed formation scenario in which the clusters formed from molecular clouds on the open stream orbit derived by Kruijssen et al. (2015). Meanwhile, our constraints on the birth location and velocity of the clusters offer mild support for a scenario in which the clusters formed via collisions between gas clouds on the x1 and x2 bar orbit families.Comment: Accepted for publication in ApJ. 38 pages, 25 figures. Proper motion catalogs included in ancillary material

    New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"

    Full text link
    Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than 3.51083.5\cdot 10^{-8} GeV1^{-1} and 3.21083.2\cdot 10^{-8} GeV1^{-1}, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure

    The Quintuplet Cluster: Extended Structure and Tidal Radius

    Get PDF
    The Quintuplet star cluster is one of only three known young (<10<10 Myr) massive (M >104>10^4 M_\odot) clusters within 100\sim100 pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze the Quintuplet's dynamical structure. Using the HST WFC3-IR instrument, we take astrometric and photometric observations of the Quintuplet covering a 120×120120''\times120'' field-of-view, which is 1919 times larger than those of previous proper motion studies of the Quintuplet. We generate a catalog of the Quintuplet region with multi-band, near-infrared photometry, proper motions, and cluster membership probabilities for 10,54310,543 stars. We present the radial density profile of 715715 candidate Quintuplet cluster members with M4.7M\gtrsim4.7 M_\odot out to 3.23.2 pc from the cluster center. A 3σ3\sigma lower limit of 33 pc is placed on the tidal radius, indicating the lack of a tidal truncation within this radius range. Only weak evidence for mass segregation is found, in contrast to the strong mass segregation found in the Arches cluster, a second and slightly younger massive cluster near the Galactic Center. It is possible that tidal stripping hampers a mass segregation signature, though we find no evidence of spatial asymmetry. Assuming that the Arches and Quintuplet formed with comparable extent, our measurement of the Quintuplet's comparatively large core radius of 0.620.10+0.100.62^{+0.10}_{-0.10} pc provides strong empirical evidence that young massive clusters in the Galactic Center dissolve on a several Myr timescale.Comment: 25 pages (21-page main text, 4-page appendix), 18 figures, submitted to Ap

    Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives

    Get PDF
    Recent theoretical and experimental studies highlight the possibility of new fundamental particle physics beyond the Standard Model that can be probed by sub-eV energy experiments. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" (LSW) from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or axion-like particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. No excess of events has been detected over the background. The di-photon couplings of possible new light scalar and pseudo-scalar particles can be constrained in the massless limit to be less than 8.0×1088.0\times10^{-8} GeV1^{-1}. These results are very close to the most stringent laboratory constraints obtained for the coupling of ALPs to two photons. Plans for further improving the sensitivity of the OSQAR experiment are presented.Comment: 7 pages, 7 figure
    corecore