33 research outputs found

    Lorentz Reciprocal Theorem in Fluids with Odd Viscosity

    Full text link
    The Lorentz reciprocal theorem -- that is used to study various transport phenomena in hydrodynamics -- is violated in chiral active fluids that feature odd viscosity with broken time-reversal and parity symmetries. Here we show that the theorem can be generalized to fluids with odd viscosity by choosing an auxiliary problem with the opposite sign of the odd viscosity. We demonstrate the application of the theorem to two categories of microswimmers. Swimmers with prescribed surface velocity are not affected by odd viscosity, while those with prescribed active forces are. In particular, a torque-dipole can lead to directed motion.Comment: 10 pages, 3 figure

    Hydrodynamics of an odd active surfer in a chiral fluid

    Get PDF
    We theoretically and computationally study the low-Reynolds-number hydrodynamics of a linear active microswimmer surfing on a compressible thin fluid layer characterized by an odd viscosity. Since the underlying three-dimensional fluid is assumed to be very thin compared to any lateral size of the fluid layer, the model is effectively two-dimensional. In the limit of small odd viscosity compared to the even viscosities of the fluid layer, we obtain analytical expressions for the self-induced flow field, which includes non-reciprocal components due to the odd viscosity. On this basis, we fully analyze the behavior of a single linear swimmer, finding that it follows a circular path, the radius of which is, to leading order, inversely proportional to the magnitude of the odd viscosity. In addition, we show that a pair of swimmers exhibits a wealth of two-body dynamics that depends on the initial relative orientation angles as well as on the propulsion mechanism adopted by each swimmer. In particular, the pusher-pusher and pusher-puller-type swimmer pairs exhibit a generic spiral motion, while the puller-puller pair is found to either co-rotate in the steady state along a circular trajectory or exhibit a more complex chaotic behavior resulting from the interplay between hydrodynamic and steric interactions. Our theoretical predictions may pave the way toward a better understanding of active transport in active chiral fluids with odd viscosity, and may find potential applications in the quantitative microrheological characterization of odd-viscous fluids.Comment: 21 pages, 8 figure
    corecore