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Chapter 1

General Background

1.1 Physical chemistry of biological matter

1.1.1 Biological nanomachines

Biological nanomachines are nanometer-size proteins that catalyze chemi-

cal reactions in the presence of substrate molecules, e.g., adenosine triphosphate

(ATP) [1.1]. During chemical reactions, nanomachines or motor proteins change

their shapes to generate forces to surrounding environments such as the cyto-

plasm or biological membranes. For example, the myosin proteins are responsi-

ble for muscle contraction by generating directional movement along actin fila-

ments, while kinesins and dyneins that walk along microtubules are important

for vesicle trafficking (see Fig. 1.1 for the schematic illustration of a dynein). In

addition to these translational motors that are responsible for motile processes

in a biological cell [1.2], there are rotor proteins called ATP synthase or F0F1

ATPase that exhibits rotational motions to allow proteins or other materials to

pass through the membrane (Fig. 1.2). These rotary enzymes are classified as

membrane proteins because they are embedded in biological membranes to be

responsible for various life-sustaining processes [1.2].

One of the characters of these motor proteins is that they consume chemical

energy in order to deliver mechanical work such as unidirectional movements.

1



2 Chapter 1. General Background

Figure 1.1: Dynein motor is a large macromolecular assembly that plays a role
in organelle transport along microtubule. Adapted from Ref. [1.1].

Each mechanical step is related to free energy of ATP hydrolysis ∆E and one

can roughly estimate the force f exerted by a motor protein as [1.2]

f =
∆E

$
≈ 20 kBT

8 nm
≈ 10 pN, (1.1)

where $ = 8 nm is the typical distance traveled by a kinesin motor and kBT ≈

4 pN with kB and T being the Boltzmann constant and the temperature, re-

spectively. Furthermore, by assuming that motor proteins or enzymes consist of

an elastic spring, one can estimate motor’s elastic constant k and characteristic

relaxation timescale τ as

k =
f

a
≈ 10 pN

10 nm
≈ 10−3 N/m, τ =

ζ

k
≈ 10−7 N · s/m

10−3 N/m
≈ 10−4 s, (1.2)

respectively. Here, we have chosen the protein size as a ≈ 10 nm and the friction

coefficient of a motor as ζ = 10−7 N·s/m. These estimates give characteristic

physical quantities for motor proteins at the small scales.

Since their mechanical work are allowed by attaching themselves to some

biological structures such as filaments or membranes, as shown in Figs. 1.1 and

1.2, motile behavior was not reported for enzymatic molecules that are freely

dispersed in aqueous solutions or cytoplasm and are not attached to surround-
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Figure 1.2: (Left) F0F1 ATPase bounded in biological membranes, which rotates
in the presence of the hydrogen ion gradient and drives the chemical synthesis of
ATP from ADP. Adapted from Ref. [1.1]. (Right) The three-dimensional (3D)
structure of the F1 ATPase, determined by x-ray crystallography. Adapted from
Ref. [1.1].

ing structures. However, it has been experimentally shown that enzymes also

exhibit mechanical motions and their dependency on substrate concentrations

or theoretical modelings have attracted much attention.

1.1.2 Biocatalysis by enzymatic molecules

Enzymes are functional macromolecular proteins, each of which consists of

amino acids in a particular sequence [1.1]. The assembly of amino acids folds into

a precise 3D conformation with reactive sites on its surface [see Fig. 1.3(Left)

for lysozyme] [1.1]. Therefore, these amino acids polymers bind with high speci-

ficity to other molecules, and act as enzymes catalyzing chemical processes that

make or break covalent bonds of other molecules, as schematically illustrated in

Fig. 1.3(Right) [1.1]. Moreover, these proteins play other roles such as maintain-

ing structures, generating movements, and sensing signals, which are essential

for cellular metabolism and homeostasis [1.1, 1.2].

To exhibit specific functions in cells, the shapes of most biological macro-

molecules are highly constrained [1.1]. In principle, however, most of the covalent

bonds in a macromolecule allow rotation of atoms, and gives the polymer chain

great flexibility. This allows a macromolecule to adopt an almost unlimited

number of conformations caused by random thermal motions of surrounding en-
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Figure 1.3: (Left) The enzyme lysozyme having a 3D conformation with the
catalytic site on its surface. Adapted from Ref. [1.1]. (Right) Lysozyme molecule
breaks a covalent bond of polysaccharide chain in the catalytic cycle. Adapted
from Ref. [1.1].

vironments. [1.1]. In fact, macromolecules can fold tightly into highly preferred

conformations because of many weak noncovalent bonds that form between dif-

ferent parts of the same molecule [1.1].

The four types of noncovalent interactions (hydrogen bonds, van der Waals

attractions, hydrophobic forces, and electrostatic attractions) are essential for

biological molecules. Although the strength of these noncovalent bonds is 20

times weaker than that of a covalent bond, they provide tight binding once many

of such weak interactions are formed simultaneously [1.1]. In addition, they

can also add up to create a strong attraction between two different molecules

when these molecules fit together very closely [1.1]. Since the strength of the

binding depends on the number of noncovalent bonds that are formed between

molecules, interactions of almost any affinity are possible [1.1]. This allows rapid

dissociation of a molecule, which drives catalytic chemical cycles followed by the

dissociation of product molecules [1.1, 1.2].

Recent advances in fluorescence microscopy have allowed studies of single

molecules observation. In 1988, Lu et al. investigated enzymatic turnovers of

single cholesterol oxidase molecules in real time by monitoring the emission from

the enzymes fluorescent active site [1.3]. Moreover, they derived the waiting time

distribution of the enzymes, and showed that the obtained distribution agrees

well with that derived from real-time trajectories of enzymes (see Fig. 1.4).
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Figure 1.4: The histogram of occurrence as a function of on-time, which cor-
responds to the waiting time for the reduction of cholesterol oxidases’ active
sites. The solid line denotes the waiting time distribution derived from the
single enzyme kinetics. Adapted from Ref. [1.3].

Later, it was shown that the reaction velocity for single-enzyme observations

coincides with that for ensemble-enzyme observations as long as the factor of the

total concentration of enzymes are neglected [1.4, 1.5]. This relation originates

from the equivalence between the average over the long time trace of a single

molecule and that over a large ensemble of identical molecules.

1.1.3 Conformational dynamics during chemical reactions

Motor proteins such as myosin and kinesin undergo unidirectional motion

that is responsible for autonomously contracting muscles and the transport of

materials within cells [1.1]. By catalyzing ATP hydrolysis, they achieve sufficient

energy to exhibit the motile behavior. On the other hand, most of enzymes do

not exhibit such behavior although both motor proteins and enzymes catalyze

chemical reactions. In particular, enzymes exhibit a distinctive type of dynam-

ics, i.e., conformational change, which is generally induced by substrate binding

and product release [1.6]. Then, it follows that enzymes undergo a conforma-

tional change in each turnover cycle of the chemical reactions in the presence of

substrate molecules.

These conformational dynamics have been taken into account to mimic actual
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Figure 1.5: (Left) Conformational changes of the coarse-grained enzyme, adeny-
late kinase, from the fully open (λ1) to fully closed (λ3) conformations in the
sequential binding mechanism. Adapted from Ref. [1.7]. (Right) FRET effi-
ciency histograms of adenylate kinase in the absence of substrate (blue) and in
the presence of saturating substrate concentrations (1 mM ATP, 1 mM AMP,
and 160 µM ADP, orange), suggesting mostly open and closed conformations,
respectively. Adapted from Ref. [1.8].

enzymes in a framework of the elastic network model. Togashi et al. analyzed

nonlinear conformational relaxation dynamics of proteins in elastic networks,

and found that motions of these proteins are robust against external perturba-

tions [1.9]. Also, they constructed an example of an artificial elastic network,

operating as a cyclic machine powered by substrate binding with the use of

evolutionary optimization methods. Later, Echeverria et al. presented a multi-

scale coarse-grained description of protein conformational dynamics in a solvent,

which is described by multiparticle collision dynamics [see Fig. 1.5(Left)] [1.7].

They found that hydrodynamic interactions have important effects on the large

scale conformational motions of the protein, and significantly affect the transla-

tional diffusion coefficients and orientational correlation times [1.7].

Recently, using direct observation techniques Aviram et al. studied the rela-

tionship between conformational dynamics and the chemical steps of enzymes [1.8].

They labelled adenylate kinase, which is responsible for cellar energy homeosta-

sis, from E. coil with FRET dyes at positions of CORE and LID domains, and

derived open and closed conformations of the enzyme from histograms of FRET

efficiency [1.8]. The obtained histograms show a peak FRET efficiency value of
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0.4 in the absence of substrates, while the peak shifts to at 0.6 in the saturating

concentrations of ATP, as shown in Fig. 1.5(Right) [1.8]. By comparing these

conformational dynamics and chemical steps, they found that substrate bind-

ing increases dramatically domain closing and opening times, which are 100-200

times faster than the enzymatic turnover rate [1.8].

ATP synthase or F0F1 ATPase is composed of two different rotary motors

(F0 and F1) connected to a shaft (Fig. 1.2) and shows another type of the con-

formational change, i.e., rotational motion [1.2]. The F0 motor uses the gradient

of hydrogen ions to rotate, while the F1 motor uses APT hydrolysis to rotate

in the opposite direction of F0 [1.2]. When the transmembrane electrochemical

gradient is strong, F0 generates more torque than F1 and, so that F1 rotate in

reverse to synthesize ATP [1.2]. When the electrochemical gradient is weak, on

the other hand, the torque that F1 generates dominates over that of F0 and the

APT hydrolysis occurs, which pump hydrogen ions out of the cell [1.2]. These

different mechanisms for rotation are summarized in Fig. 1.6 [1.1]. By direct

observation of the motion of F1, Noji et al. showed that the motor rotates in

distinct steps of 120◦ and the induced torque is the order of 10 pN·nm [1.1, 1.10].

Given the nanometer-size rotary motor, one can see that the observed torque

is comparable to the force exerted by a motor protein, which is estimated in

Eq. (1.1).

1.1.4 Diffusion enhancement in enzyme solutions

To explicitly focus on enzyme-driven phenomena, diffusion in enzyme solu-

tions has been experimentally studied in recent years [1.11–1.17]. Muddana et

al. first reported the enhanced diffusion of enzyme urease in the presence of sub-

strate urea (Fig. 1.7) [1.11]. Later, it was shown that enzymes exhibit collective

motions towards the direction of higher or lower concentrations of substrates,

i.e., chemotaxis and antichemotaxis, respectively [1.12, 1.16, 1.18].

It was also claimed that the enhanced diffusion have been observed even

during catalysis at the Ångstöm scale, which is much smaller than a system of
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Figure 1.6: The ATP synthase can either (A) synthesize ATP by harnessing the
gradient of proton ions or (B) pump proton ions against their electrochemical
gradient by hydrolyzing ATP. Adapted from Ref. [1.1].

molecular enzymes [1.17, 1.18]. Since the used catalyst shows less conforma-

tional dynamics due to its rigidity compared with that of molecular proteins,

a different mechanism, such as transfer of momentum from the active catalyst

molecules, was proposed to account for the enhanced diffusion. Moreover, it

was also reported that enhanced diffusion in molecular-scale systems was due to

a convection artifact [1.19], and enhancement in diffusivity is still a matter of

debate [1.20].

Figure 1.7: The diffusion coefficient of urease increased with the increasing sub-
strate concentration. Adapted from Ref. [1.11].

To identify the mechanism of the observed enhanced diffusion and chemotac-

tic phenomena, several people have suggested theories that account for the roles
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of heat or hydrodynamic interaction caused by enzymes [1.21–1.24]. Mikhailov et

al. discussed the collective hydrodynamic flows induced by active force dipoles,

and analytically derived the diffusion enhancement of a tracer particle, which

depends linearly on the activity of enzymes [1.21, 1.22]. Then, Golestanian

proposed four mechanisms for the enhanced diffusion of enzymes, namely self-

thermophoresis, boost in kinetic energy, stochastic swimming, and collective

heating, and concluded that only the last two descriptions can account for

the phenomenon [1.23]. Later, Illien et al. took into account the hydrody-

namic effects induced by conformational changes of enzymatic domains, and

demonstrated that a single enzyme can diffuse faster even at equilibrium [1.24].

However, a recent experiment pointed out the difficulty to quantitatively ac-

count for the observed enhanced diffusion within the suggested theoretical ap-

proaches [1.25].

Figure 1.8: (A) Bright-field image of an A7 cell with microinjected 200-nm-
diameter fluorescence particles (green) and 2 min trajectories (black) super-
imposed on top. Scale bar, 5 µm. (B) Two-dimensional ensemble-averaged
mean-square displacement of tracer particles of various sizes are plotted against
lag time on a log-log scale, in living A7 cells. Red, green, and blue symbols
and lines represent particles that are 100, 200, and 500 nm in diameter, respec-
tively. (C) Ensemble-averaged mean-square displacement scaled with particle
diameter, in untreated (solid symbols), blebbistatin treated (open symbols),
and ATP-depleted (solid lines) A7 cells. Adapted from Ref. [1.26].
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Figure 1.9: 2D trajectories of GFP-LacI-labeled mini-RK2 plasmids overlaid on
corresponding phase-contrast images of metabolically active and DNP-treated
E. coli cells (JP924). Scale bar is 1 µm. Adapted from Ref. [1.27].

1.2 Nonequilibrium phenomena in living sys-

tems

1.2.1 Active transport in biological cells

In recent years, to better understand nonequilibrium phenomena in biologi-

cal cells, the diffusive properties of tracer particles in vivo have been experimen-

tally studied [1.26, 1.27]. Guo et al. microinjected submicron colloidal particles

into A7 melanoma cells, and measured their time-dependent motion to calcu-

late ensemble-averaged mean-square displacement (Figs. 1.8A and 1.8B) [1.26].

In Fig. 1.8B, the mean-square displacement shows constant behavior at small

timescales, whereas at large timescales the quantity increases approximately lin-

early with time [1.26]. Although this linearly increasing behavior is consistent

with Brownian motion in a purely viscous liquid and at thermal equilibrium,

these ideas can not be applied to the cytoplasm [1.26]. They also observed

the mean-square displacement in cells whose activity is inhibited, and found no

change of the displacement compared to that in active cells at small timescales

as shown in Fig. 1.8C [1.26]. At large timescales, on the other hand, the quantity

exhibits increasing and nearly time-independent behaviors when myosin is inhib-
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ited and ATP is depleted, respectively [1.26]. These results suggest that not only

motor proteins but also ATP-driven proteins such as enzymes play important

roles in the motion of particles in cells. Parry et al. performed similar experi-

mental studies in the bacterial cytoplasm, and observed the enhanced diffusion

of plasmids in untreated cells, which is termed anomalous diffusion compared

with the Brownian diffusion due to thermal motions of solvent molecules (see

Fig. 1.9) [1.27].

These experimental findings demonstrate that passive particles diffuse faster

when cells function properly in the presence of substrate molecules, and imply

that nonequilibrium fluctuations driven by energy supplied to cells contribute

to nonthermal diffusion. At the same time, ATP-dependent diffusion observed

in the cytoplasm suggests that enzymes that catalyze chemical reactions us-

ing substrate molecules also have some contribution to the anomalous diffusion.

However, due to the complexity of cellular environments, which contain struc-

tures and materials such as cytoskeletons and viscoelastic media, the mechanism

of anomalous diffusion has not yet been definitively identified.

1.2.2 Rheology of sub- and multicellular systems

Biomolecular machines exhibit mechanical motions in fluid environments

such as cytoplasm or biological membranes, and the physical properties of the

fluid with these active constituents are important for biomolecular transports

and chemical reactions [1.28]. Hence, the effect of enzymatic activity on rhe-

ological properties of such active fluids has gathered much attention in recent

years.

Before proceeding to reviewing some experimental findings in this field, we

first review the concept of the rheological properties of ordinary passive fluids.

In general, the rheological properties of fluids are characterized by the fourth-

rank viscosity tensor ηijk! that connects the linear relation between the strain
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rate tensor vij = (∂ivj + ∂jvi)/2 and the fluid stress tensor σij [1.29]:

σij = ηijk!vk!, (1.3)

where the indices i, j, k, $ = x, y, z and we assume summation over repeated

indices throughout this chapter. In the above, v is the fluid velocity field and

the viscosity tensor for a 3D isotropic fluid is given by [1.29]

ηijk! =ηdδijδk! + ηs

(
δikδj! + δi!δjk −

2

3
δijδk!

)
, (1.4)

where δij is the Kronecker delta and ηd and ηs are the dilatational and shear

viscosities, respectively. Experimentally, the viscosity is measured through the

autocorrelation functions of the viscous stress σxy on the basis of the linear

response theory

ηs =
1

kBTV

∫ ∞

0

dt 〈σxy(t)σxy(0)〉, (1.5)

where V is the volume and 〈· · · 〉 denotes the average over the steady-state

ensemble of trajectories. For a passive fluid, its viscosities can be modified, e.g.,

by the density of immersed particle, the system temperature, or applied shear

forces [1.28]. On the other hand, these rheological properties can be modified by

other contributions for the cytoplasm or biological membranes where metabolic

activities are present and the systems are strongly driven out of equilibrium.

Nishizawa et al. experimentally studied the shear viscosity of cytoplasm

for various concentrations of macromolecules [1.30]. The viscosity of cell ex-

tracts without metabolic activation rapidly increased with the macromolecule

concentration, which shows diverging viscosity at critical concentrations c∗ ∼

0.34 g/mL, as shown in Fig. 1.10 [1.30]. The concentrations are close to the

physiological concentration in living cells (∼ 0.3 g/mL) [1.30]. On the other

hand, metabolically active living cells showed moderate fluidity [1.30]. These

experimental findings suggest that metabolic activities are important for finite

fluidity that facilitates the efficient transport of molecules in living cells [1.30].

In more macroscopic scales, the shear viscosity of bacterial suspensions have
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Figure 1.10: The effective viscosity η of BSA solutions (red circles) and cell ex-
tracts (green triangles: E. coli, blue squares: Xenopus eggs, and black diamonds:
HeLa cells) as a function of the macromolecules concentration c. The viscosity
η is rescaled by the water viscosity ηw. Adapted from Ref. [1.30].

been studied [1.28, 1.31, 1.32]. Rafäı et al. performed experiments on the rheol-

ogy of suspensions of live cells, Chlamydomonas Reinhardtii and revealed that

the obtained viscosity was greater than for suspensions with the same volume

fraction of dead cells [1.32]. Later, López et al. investigated the response of an

E. coli suspension under the shear flow and showed that the suspension vis-

cosity decreases with the increasing bacterial density at low shear rate [1.31].

These experimental findings suggest that active constituents that convert chem-

ical energy into mechanical work contribute to rheological signatures dependent

of their internal activity [1.28]. Although such active macroscopic properties are

expected to exist also in enzymatic solutions, much less work has been done in

such systems.

1.2.3 Emergent macroscopic patterns in active chiral sys-

tems

In addition to the above peculiar rheological properties, the emergent macro-

scopic patterns have been investigated in active fluids [1.33–1.36]. Experimen-

tally, such active systems have been realized in nanoscale molecular motors [1.33,

1.35] or multicellular biological systems [1.34, 1.36]. Sumino et al. investigated
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Figure 1.11: (Left) Effective viscosity of live (solid) and dead (crossed) Chlamy-
domonas Reinhardtii suspensions as a function of the volume fraction φ.
Adapted from Ref. [1.28]. (Right) Effective viscosity of E. coli suspensions as a
function of the applied shear rate γ̇ for various values of the volume fraction φ.
Adapted from Ref. [1.31].

Figure 1.12: (Left) Large-scale lattice of vortices. Vortices can be observed
everywhere on the surface of the flow cell. Scale bar is 2 mm. Adapted from
Ref. [1.33]. (Right) Phase contrast image with the circular flow observed at the
edges of open circles (500 µm diameter) of neural progenitor cell culture. Orange
arrows are proportional to the velocity of cell flow calculated by averaging the
cell displacements within 30 µm square regions. Scale bar is 200 µm. Adapted
from Ref. [1.34].

the behavior of microtubules that are propelled by surface-bound dyneins and

observed that self-organization of the microtubules due to the alignment mech-

anism results in vortices at high densities [Fig. 1.12(Left)] [1.33]. In addition,

a spatiotemporal pattern was found in the monolayer of synthetic molecular

motors [1.35]. For larger scales such as multicellular systems, edge flows were

observed at the boundary of active nematic cells [Fig. 1.12(Right)] [1.34]. In the

bacterial suspensions, Beppu et al. showed that edge currents grow stronger as

the increasing bacterial density [1.36].
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The common feature of these emergent chiral patterns is that the parity

symmetry is broken due to the collective effect of motor proteins [1.33], the

chiral structure of molecules [1.35], or the surrounding geometries [1.34, 1.36].

Moreover, these active constituents continuously consume energy and hence the

time-reversal symmetry is apparently broken. Since both the time-reversal and

parity symmetries are violated in these biological environments, they are called

active chiral systems and in particular, active chiral fluids within the hydrody-

namic description [1.37]. In these out-of-equilibrium systems, the equilibrium

concept such as free energy, detailed balance, and time-reversal symmetry are

invalidated [1.38] and new physical quantities that characterize the systems are

necessary.

1.3 Coarse-grained modeling of biological nanoma-

chines

1.3.1 Continuum hydrodynamic description

For the passive case without activity, the disturbance flow arises only when

an external force or flow field is imposed on a fluid [1.28]. For the active case,

however, the disturbance flow is indued even in a quiescent fluid because of

the mechanical work driven by motor proteins or enzymatic molecules. Over

the length scale of molecular proteins where the inertial effect is negligible, the

hydrodynamic behavior is governed by the well-known Stokes equation

−∇p(r) + ηs∇2v(r) + F(r) = 0, (1.6)

and the incompressibility condition

∇ · v(r) = 0, (1.7)

with the 3D differential operator ∇ = (∂x, ∂y, ∂z) and the position r = (x, y, z).

In the above, p is the hydrostatic pressure, ηs is the shear viscosity, v is the fluid

velocity field, and F is any other arbitrary force density on the fluid.
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Figure 1.13: Streamlines induced by (left) Stokeslet for n = 0 and (middle)
stresslet and (right) rotlet for n = 1 in Stokes flows. Adapted from Ref. [1.28].

In this Stokes regime, the disturbance flow at the position r induce by F at r0

is expressed as vi(r) = −
∫
∂V dAGij (r− r0)Fj (r0), where the Green’s function

or the propagator for a 3D unbounded fluid, namely the Oseen tensor is [1.39]

Gij(r) =
1

8πηsr

(
δij +

rirj
r2

)
, (1.8)

with r = |r|. If the position of the point r is far from that of F, a Taylor

expansion of the Green’s function provides a far-field representation of the flow

in terms of multipole momentsM(n) of the tractions and velocities, which drive a

superposition of singular flows expressed in terms of G and its derivatives [1.28,

1.40]:

vi(r) ≈
∞∑

n=0

∂(n)k Gij(r)M
(n)
jk . (1.9)

Figure 1.13 represents the streamlines that are induced by the Stokeslet M(0) =

F when n = 0 and the symmetric (stresslet, S) and antisymmetric (rotlet, L)

parts of M(1) when n = 1.

In a biological context, no force and torque act on nanomachines as they

function autonomously in the presence of chemical energy, requiring the con-

dition F = L = 0 to hold in general. Hence, the stresslet S and the torque

dipole M(2) have been used to model enzymatic molecules [1.21, 1.22] and ro-

tary proteins [1.41, 1.42], respectively, as will be discussed in more detail later.

For biological membranes, moreover, one has to derive the mobility tensor for

free [1.43, 1.44], confined [1.45], or curved [1.46] geometries of a 2D fluid, which
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requires the revisiting the 2D version of Eq. (6.4) [1.47–1.49].

Figure 1.14: The active force dipole for a molecular enzyme that undergoes the
conformational change cyclically in the presence of substrate molecules. In the
model, the time-dependent distance and the force of the enzyme are x(t) and
F(t), respectively.

1.3.2 Active force dipole model

In this section, we shall present more detailed descriptions of the active force

dipole model that was originally proposed by Mikhailov and Kapral [1.21, 1.22].

As explained in Sec. 1.1, each actual enzyme has a specific 3D conformation

that depends on its biological function and surrounding environments such as

the cytoplasm and biological membranes. At large scales, however, any enzyme

can be regarded as an active force dipole as shown in Fig. 1.14. The active force

dipole consists of two domains, representing enzymatic domains, connected with

a shaft, and its length cyclically varies in time to mimic the conformational

dynamics of enzymes during chemical reactions.

Since a dipole exerts the time-dependent force, F(t), in its axis direction, the

dipole induces the hydrodynamic flow in surrounding environments. If the force

dipole is immersed in a 3D fluid, the generated flow field can be calculated from

Eq. (1.9) when n = 1:

vi(r) = −F (t)x(t)x̂k∂kGij(r)x̂j, (1.10)

where F(t) = F (t)x̂ with x̂ being a unit vector in the direction of the enzyme

axis. In a context of self-propelled microswimmers, F > 0 (F < 0) denotes a

pusher (puller) type of a micromachine. The resultant flow is the stresslest that

is plotted in Fig. 1.13. When multipole dipoles are immersed in fluids, they
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induce collective hydrodynamic flows in their surroundings, which can lead to

nonthermal fluctuations in the system. Considering these hydrodynamic effects,

Mikhailov et al. derived the diffusion coefficient of a passive tracer in a solution

where dipoles are homogeneously distributed in space and the directions of their

long axes are randomly distributed. Moreover, when the concentration gradient

of dipoles are present, the tracer exhibits chemotaxis, which was observed in

experiments [1.12]. Later, Koyano et al. discussed the situation where dipoles

are aligned and concentrated in a liquid domain that corresponds to lipid rafts

in biological membranes [1.50].

The hydrodynamic interactions and clustering mechanisms of active force

dipoles were also investigated in flat [1.51] or curved [1.52] biological membranes.

Manikantan examined the phase behavior of a pair of hydrodynamically inter-

acting force dipoles and showed that bulk confinement plays a striking role in

clustering of dipoles [1.51]. Moreover, it was demonstrated that multiple dipoles

exhibit the collective dynamics that can be tuned by the confinement on the

membrane [1.51]. In a curved geometry, aggregation effects of dipoles were con-

firmed in regimes of both low and high curvatures [1.52]. One of the features of

2D fluid membrane geometries is that they have hydrodynamic screening lengths

that make the short distance hydrodynamic behavior significantly different from

the long one [1.43–1.45].

1.3.3 Fluctuation-induced hydrodynamic coupling

So far, the hydrodynamic flow induced by a single or multiple enzymes have

been discussed in terms of the active force dipole model [1.21, 1.22]. Next, we

review some of the theories that account for the internal hydrodynamics between

the domains of a single enzyme [1.24, 1.53–1.55]. Since an actual macromolecular

enzyme is asymmetric in general, its internal degrees of freedom are coupled to

its center of mass diffusion, which would give rise to the change in the diffusion

coefficient [1.54].

Considering the effect of conformational fluctuations of an asymmetric dumb-
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Figure 1.15: (Left) The asymmetric dumbbell model with the typical size of
the protein a, which is made of two subunits with orientations û1 and û2, and
located at positions x1 and x2. The vector R denotes the center of mass of the
protein and x its elongation. Adapted from Ref. [1.24]. (Right) An enzyme in
a gradient of substrate molecules. The enzyme interacts with substrates in the
bulk via pairwise hydrodynamic and noncovalent surface interactions. Adapted
from Ref. [1.55].

bell model (Fig. 1.15), Illien et al. showed that thermal fluctuations can give rise

to negative contributions to the overall diffusion coefficient [1.24]. In addition,

the time dependence of the diffusion coefficient of the dumbbell was derived

with the use of the path integral formulation [1.24]. Later, Adeleke-Larodo et

al. studied the anisotropy effect on the enzyme diffusive behavior and derived the

long-time diffusion coefficient of an asymmetric dumbbell by using the moment

expansion technique [1.53]. They also studied the response of an asymmetric

dumbbell enzyme to an inhomogeneous substrate concentration and showed that

the enzyme exhibits a tendency to align parallel or antiparallel to the gradient,

depending on the enzyme affinity to the substrate (Fig. 1.15) [1.55]. Moreover,

they found that the hydrodynamic interaction plays an important role in the col-

lective behavior of many interacting enzyme molecules [1.55]. These theoretical

findings suggest that hydrodynamic interactions lead to the interaction between

the enzyme and substrate molecules as well as the diffusion enhancement of a

single enzyme even at equilibrium states [1.24, 1.53–1.55].
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1.3.4 New concept for nonequilibrium systems: Nonre-

ciprocity

Active systems are driven strongly out of equilibrium because of the energy

input that is continuously consumed by their constituents. This implies the ab-

sence of equilibrium concepts such as free energy, detailed balance, time-reversal

symmetry, and Newton’s third law [1.38]. The violation of Newton’s third law

means that interactions between the objects are nonreciprocal, which is a key

feature of chemical interactions between two different species, e.g., synthetic

catalytic colloids, biological enzymes, or whole cells or microorganisms [1.56].

For a 3D fluid, the hydrodynamic interaction between the two object separated

by the distance r is described by the Oseen tensor Gij(r) of Eq. (1.8) as long as

r is large enough [1.39]. Under the exchange of the index i ↔ j, Gij(r) remains

the same and the symmetry relation, Gij = Gji, holds. This is known as the

reciprocal theorem in fluid dynamics [1.57]. In active fluids driven by biologi-

cal nanomachines, however, the reciprocal relations is expected to be violated,

i.e., Gij (= Gji, which leads to peculiar collective behavior in out-of-equilibrium

systems.

Agudo-Canalejo and Golestanian theoretically studied mixtures of chemically

interacting particles and unveiled the existence of a new class of active phase

separation phenomena where action-reaction symmetry or reciprocal relation

is broken [1.56]. Suppose that the concentration field of chemical around a

chemically active particle of species i is c ∼ αi/r with the activity αi and the

distance to the particle’s center r, the motion of a particle of species j in response

to gradients of the chemical is given by a velocity Vij ∼ −µj∇c = αiµjrij/r3ij.

Here, µj is the mobility of the species and rij = ri−rj with rij = |rij|. Since the

nonreciprocal relation, Vij (= Vji, holds in general, an action-reaction symmetry

is broken, which can not been seen at equilibrium states. Such a nonreciprocity

leads to a variety of active phase separation phenomena, as shown in Fig. 1.16.

Later, Ouazan-Reboul et al. extended the above model by considering size
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Figure 1.16: Binary mixtures of producer (α1 > 0, blue) and consumer (α2 < 0,
red) species show (left) homogeneous states with association of particles into
small aggregation, (middle) a static dense phase that coexists with a dilute
phase, and (right) separation into two static collapsed clusters. Adapted from
Ref. [1.56].

dispersity of the catalytically active particles and the dependence of catalytic

activity on the substrate concentration [1.58]. In addition, a continuum model of

pattern formation due to nonreciprocal interaction was proposed and a traveling

density wave was confirmed, which is a clear signature of broken time-reversal

symmetry in this active system [1.59]. Despite these theoretical findings, studies

on physical quantities that lead to the emergence of the nonreciprocal relation

in active systems are sparse and further investigations are needed to estimate

the extent of nonreciprocity in a biological context.

1.4 Time-reversal symmetry and parity break-

ing transport coefficient: Odd viscosity

1.4.1 Microscopic and macroscopic origins of odd viscos-

ity

Odd viscosity is a rheological property that exists only when the time-reversal

and parity symmetries are broken. Although the concept was known for gasses or

plasmas in an external magnetic field [1.60], Avron et al. showed in 1995 that the

odd viscosity is present in a quantum Hall fluid and connected the viscosity with

Berry curvature [1.61]. Since this study, the odd viscosity has been discussed in
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a fractional quantum Hall or chiral super fluidic systems [1.62]. Since the odd

viscosity can be a new measure that characterizes a type of the quantization or

universality in these systems, this transport coefficient has gained much more

attention not only in condensed matter but also in active matter contexts that

deal with living systems.

For a passive isotropic fluid, ηijk! is symmetric under the exchange of i ↔ j,

while ηijk! = ηij!k holds from the definition of the symmetric tensor vk!, as can be

inferred from Eq. (1.4). Extending the above symmetry argument, Avron et al.

introduced a new type of index exchange ij ↔ k$, which implies time-reversal

transformation [1.61, 1.63]. For the passive case, the symmetry relation holds,

i.e., ηijk! = ηk!ij, as can be seen in Eq. (1.4), whereas the asymmetric (odd) part

that satisfies ηo,ijk! = −ηo,k!ij is a new contribution to the viscosity tensor. For

a 2D isotropic fluid, the odd part of the viscosity tensor can be written solely in

terms of the scalar transport coefficient called odd viscosity ηo as [1.64, 1.65]

ηo,ijk! =
1

2
ηo (εikδj! + εj!δik + εi!δjk + εjkδi!) , (1.11)

where εij is the 2D Levi-Civita tensor with εxx = εyy = 0 and εxy = −εyx = 1.

The above viscosity tensor ηo,ijk! is parity-even because both σij and vk! are

parity-even, whereas terms that include odd number of εij are parity-odd. Hence,

it is concluded from Eq. (1.11) that ηo exists only if both time-reversal and parity

symmetries are broken [1.37].

Using the Poisson-Bracket approach, Markovich et al. presented a first-

principles microscopic Hamiltonian theory for odd viscosity and showed that

the viscosity is present both in 2D and 3D systems [1.66]. Through the relation

between the angular momentum density ! of rotating particles and odd viscos-

ity [1.66], they also showed that ! = I · τ/Γ at the steady state, which is in

agreement with the hydrodynamic derivation [1.37]. Here, I is the momenta of

inertia tensor, τ is the torque density, and Γ is the rotational friction coefficient

of a particle. On the other hand, Khain et al. systematically studied all possible
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viscosity coefficients that violate parity in a 3D fluid [1.67] and showed that in

some cases, their obtained coefficients correspond to ! obtained in Ref. [1.66].

Moreover, the Green-Kubo formulas that relate ηo to the stress tensor was

derived as [1.65, 1.68]

ηo =
1

kBTV

∫ ∞

0

dt [〈σxx(t)σyx(0)〉 − 〈σyx(t)σxx(0)〉

+ 〈σxy(t)σyy(0)〉 − 〈σyy(t)σxy(0)〉] . (1.12)

Note here that when the time-reversal symmetry is preserved, i.e., σ(t) = σ(−t),

and under the assumption of the time translational invariance, i.e., 〈σ(t)σ(t′)〉 =

〈σ(t−t′)σ(0)〉 [1.69], the odd viscosity ηo vanishes. This means that the violation

of the time-reversal symmetry is essential for the existence of odd viscosity and

the active chiral system with the broken symmetries inherently possesses the

odd transport coefficient [1.37, 1.66]. By using molecular dynamics simulations

and Eq. (1.12), odd viscosity has been measured [1.65, 1.68].

Figure 1.17: (Left) Unidirectional edge flows of the droplet of chiral spinner
fluid. Adapted from Ref. [1.70]. (Right) Topological waves in fluids with odd
viscosity. Color shows density deviations. Adapted from Ref. [1.71].

1.4.2 Unidirectional edge waves at fluid boundaries

From the experimental point of view, odd viscosity was measured for a fluid

consisting of self-spinning particles [1.70, 1.72–1.74]. Soni et al. considered an

active chiral fluid that includes spinning colloidal magnets and studied the fluid

flow with a focus on its surface dynamics [1.70]. They found that unidirectional

waves emerged at the fluid boundary [Fig. 1.17(Left)] and further related the
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surface tension to odd viscosity, which is the first experimental verification of

odd viscosity [1.70]. Similar robust surface flows were also observed at the

macroscopic scale, e.g., active chiral granular systems with centimeter-scale toys

called Hexbug [1.72] or gear-like particles [1.73]. Later, by taking into account

the inter-particle hydrodynamic lubrications, the first normal stress difference

turned out to related to odd viscosity in the sheared active chiral system [1.74].

In quantum systems, odd viscosity has been discussed in relation to topo-

logical systems, such as quantum Hall fluids [1.61], whereas in classical systems,

the viscosity has been rarely investigated. Recently, it has been shown that the

odd viscosity characterizes topological edge modes even in a classical fluid with

odd viscosity [1.71, 1.75, 1.76]. Souslov et al. demonstrated that the topological

properties of linear waves [Fig. 1.17(Right)] in a fluid is affected by odd viscosity

and the number of chiral edge states depend on the signs of both odd viscosity

and the rotational property of the fluid [1.71]. They also found that the behavior

can be related with a bulk topological invariant Chern number, which is given

by

C = sign(ηo) + sign(ω), (1.13)

where ω is the intrinsic rotation angular frequency of the fluid constituent. Later,

it was shown that edge modes depend on the boundary conditions of the flu-

ids [1.75, 1.76].

1.4.3 Inertialess hydrodynamic effects due to odd viscos-

ity

Next, we shall explain the hydrodynamic consequences of odd viscosity, which

have been examined so far [1.63–1.65, 1.77, 1.78, 1.78]. Through the momentum

balance equation, ∇ ·σ−∇p = 0, at low Reynolds number, where inertia is neg-

ligible [1.69], one can obtain the hydrodynamic equation for a 2D incompressible

fluid with odd viscosity as [1.63]

−∇p+ ηs∇2v + ηo∇2ε · v = 0, (1.14)
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together with the 2D version of the incompressibility condition ∇ · v = 0 of

Eq. (1.7). The third term on the left-hand side of Eq. (1.14) is a new contribution

due to the presence of nonvanishing odd viscosity. Since the antisymmetric

tensor ε accounts for the clockwise rotation by π/2, one can see that odd viscosity

contributes to the fluid flow that is perpendicular to the one generated by shear

viscosity ηs.

The hydrodynamic forces acting on various objects have been studied the-

oretically for a 2D incompressible fluid in the presence of odd viscosity [1.64,

1.77, 1.78]. Ganeshan et al. showed that if boundary conditions depend only on

the velocity field, it does not depend on ηo [1.64]. The force exerted on a unit

length of a contour of the object is given by the traction force fj = niσij where

n is a unit vector normal to the contour in the direction of the fluid. From the

relation fj = 2ηo∂svj with s = −ε·n, the total force on the object becomes [1.64]

Fj = 2ηo

∫
ds vj = 0, (1.15)

which means that the net force acting on an arbitrarily shaped object does not

depend on ηo [1.64]. This implies that one should include appropriate boundary

conditions in a 2D incompressible fluid in order to reveal the presence of odd

viscosity [1.64, 1.77, 1.78]. In that sense, an expanding bubble with a no-stress

boundary condition has been considered and it was shown that the odd viscosity

is responsible for a torque acting on the bubble [1.64, 1.65, 1.77, 1.78].

Figure 1.18: (Left) A fluid of torque dipoles that represents inhomogeneous odd
viscosity. (Right) Torque dipole as a model for toque exerted by bacteria and
for a myosin twisting two actin filaments. Adopted from Ref. [1.66].
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1.4.4 Odd viscosity in biological systems

Active chiral systems are abundant in living systems where the energy-

consuming agents and their inherent asymmetry play important roles. For in-

stance, biological nanomachines such as ion pumps break both the time-reversal

and parity symmetries due to ATP-driven motions and autonomous rotation,

which would give rise to odd viscosity in biological membranes [1.37]. In micro-

scopic approaches, it was shown that the odd viscosity also exists in 3D fluids,

which extends the applicability of odd viscosity in living matter such as acto-

myosin gels [Fig 1.18(Right)] [1.66].

As mentioned in Sec. 1.3.1, no external force acts on biological nanomachines

and hence the force-free or torque-free conditions should be taken into account

for enzymes and micromachines [1.21, 1.79, 1.80] or rotary proteins [1.66], respec-

tively. In living systems, moreover, heterogeneity plays an important role and

hence, odd viscosity can vary in space [Fig 1.18(Left)] [1.66]. Despite these recent

developments in the theory of odd viscosity [1.37, 1.64–1.66, 1.71, 1.77, 1.78],

there has been no experiment that observes odd viscosity in living systems. This

is because experimental protocols that allow for the measurement of odd viscos-

ity in a biological context are still sparse and hence further theoretical studies

are needed to relate odd viscosity to actual physical phenomena.

1.5 Purpose and organization of the thesis

In recent years, to better understand the complex nonequilibrium phenom-

ena observed in living systems such as the cytoplasm and biological membranes,

various studies have been performed in an interdisciplinary field involving chem-

istry, physics, biology, and engineering [1.28, 1.38]. Experimental studies demon-

strate that by harnessing chemical energy, biological nanomachines give rise to

nonequilibrium transport phenomena such as diffusion enhancement [1.11, 1.13–

1.15, 1.17, 1.26, 1.27], chemotaxis [1.12] or antichemotaxis [1.16, 1.18], and sub-

stantial change in rheological properties [1.30–1.32]. Although several model-
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ings of biological nanomachines have been conducted [1.21–1.24, 1.50], there

has been no unifying theory that quantitatively accounts for the experimental

findings [1.25]. In addition, equilibrium concepts such as the time-reversal sym-

metry and reciprocal relation do not hold in nonequilibrium living systems, and

hence further developments in universal physical properties that characterize the

systems are needed.

In this thesis, we theoretically investigate the nonequilibrium transport prop-

erties in living systems with a special emphasis on active diffusive dynamics and

rheological properties that are induced by conformational dynamics of biological

nanomachines. To this aim, we employ the active force dipole [1.21, 1.22] as a

general model for enzymatic molecules and discuss its single and collective hy-

drodynamic effects on surrounding media, and connect the obtained results to

existing experiments. Furthermore, we focus on the peculiar rheological property

called odd viscosity [1.63] and study its hydrodynamic effects for various situa-

tions. The viscosity coefficient emerges only when the time-reversal and parity

symmetries are broken in aqueous environments and are expected to exist in

living systems [1.37, 1.66].

The three following Chaps. 2-4 deal with the active force dipole that is a

minimum model for biological nanomachines. We discuss the statistical prop-

erty of a single force dipole by means of numerical simulations and provide the

estimate of the diffusion enhancement in relation to actual enzymes in Chap. 2.

We show in Chap. 3 that the shear viscosity of an enzyme solution decreases

with the increasing concentration of substrate molecules, and demonstrate the

diffusion enhancement in physiological conditions. In Chap. 4, we discuss the

hydrodynamic collective effects due to active force dipoles in free and confined

geometries of biological membranes. These obtained results provide a perspec-

tive on modeling nonequilibrium phenomena that involve a single or collective

biological nanomachines.

The next two following Chaps. 5 and 6 are concerned with odd viscosity that
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characterizes active chiral systems. Chapter 5 deals with the hydrodynamic

linear response of a 2D fluid monolayer with the odd viscosity to a point force,

force dipole, and finite-sized object that moves laterally in the fluid. Then,

Chap. 6 provides the hydrodynamic force of a liquid domain with odd viscosity,

which is immersed in a 2D fluid having another odd viscosity. These findings

can serve as experimental protocols to observe odd viscosity in living systems.

Finally, in Chap. 7, we summarize this thesis and discuss future prospects.
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Chapter 2

Statistical Properties of Enzymes

as Active Force Dipoles †

2.1 Introduction

Ligand-induced mechanochemical motions are typical for enzymes. Bind-

ing or dissociation of a ligand (i.e., substrate or product) to such proteins, as

well as chemical reactions within the ligand-bound state, are often accompanied

by conformational transitions in them. Thus, these macromolecules would re-

peatedly change their shapes in each next turnover cycle. The primary role of

mechanochemical motions is to enable and facilitate catalytic reaction events.

In the enzymes that operate as protein machines or molecular motors and cat-

alytically convert ATP or GTP, such motions are moreover employed to bring

about the required machine function or to generate work.

Since enzymes are in solution, their active conformational changes are accom-

panied by flows in the fluid around them. Such nonequilibrium flows can affect

internal mechanical motions in the enzymes and also influence translational and

rotational diffusion of such proteins, as demonstrated by MD simulations for a

model protein [2.1] and adenylate kinase [2.2]. It has been discussed whether

†The material presented in this chapter was published in: Y. Hosaka, S. Komura, and A.
S. Mikhailov, Soft Matter 16, 10734 (2020).
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hydrodynamic self-propulsion of enzymes could furthermore occur, in the mod-

els where either instantaneous transitions [2.3, 2.4] or ligand-induced continuous

conformational motions take place [2.5–2.7].

Lipid bilayers, forming biological membranes, behave as two-dimensional

(2D) fluids on submicrometer scales [2.8, 2.9]. Biomembranes often include

many active protein inclusions, such as ion pumps or transporters. Essentially,

they represent protein machines powered by ATP hydrolysis or other catalytic

reactions in them. Within each operation cycle, the shapes of their membrane

domains typically change, inducing 2D fluid flows in the lipid bilayer around

them [2.10]. As a result, active protein inclusions might even propel themselves

through biomembranes [2.11].

Collective conformational activity of enzymes and protein machines leads to

the development of nonthermal fluctuating flows in solution or a lipid bilayer.

Other particles (i.e., passive tracers) are advected by these nonequilibrium flows,

and, as previously shown [2.12] increased mixing in such systems and diffusion

enhancement should therefore arise. Additionally, chemotaxis-like effects in the

presence of spatial gradients in the concentration or the activity of enzymes can

take place [2.12]. Remarkably, such phenomena persist even if mechanochemical

motions are reciprocal; they do not rely on the presence of self-propulsion for

proteins, which is predicted to be weak [2.5–2.7].

Following the original publication [2.12], extensive further research has been

performed [2.13–2.20]. The effects of rotational diffusion and of possible nematic

ordering for enzymes were considered [2.14], the phenomena in biomembranes

were extensively analyzed [2.15, 2.16], and the theory was extended to viscoelas-

tic media as well [2.17, 2.18]. Recently, it was shown that viscosity in dilute so-

lutions of mechanochemically active enzymes should become also reduced [2.19].

Multiparticle numerical simulations of active oscillatory colloids, explicitly in-

cluding hydrodynamic effects, were furthermore undertaken and principal theo-

retical predictions could thus be verified [2.20].
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At low Reynolds numbers, the flow distribution produced by an object,

changing the shape due to internal forces within it, can be characterized in

the far field as that corresponding to a hydrodynamical force dipole. If the

time-dependent stochastic force dipole of an enzyme is known, the collective

hydrodynamic effects in solution of such enzymes are predicted by the mean-

field theory [2.12]. The difficulty, however, is that experimental measurements

and precise theoretical estimates for intensities and statistical properties of the

force dipoles corresponding to actual enzymes are not available yet. Lacking

this knowledge, only rough quantitative estimates for the considered collective

hydrodynamic effects could be made so far.

Our present study has two aims and, respectively, it includes two parts.

Section 2.2 corresponds to the first part. Here, the active dimer model is for-

mulated. The active dimer represents a minimal model where ligand-induced

mechanochemical motions are reproduced [2.12, 2.20–2.22]. After presenting

the model, we undertake an approximate analytical investigation of statistical

properties of the force dipoles corresponding to active dimers in subsection 2.2.2,

followed by a numerical study in subsection 2.2.3. Quantitative estimates for

the intensity of hydrodynamical force dipoles in real enzymes are obtained in

subsection 2.2.4.

Section 2.3 corresponds to the second part. Based on the active dimer results,

we obtain in subsection 2.3.1 more precise analytical and numerical estimates

for the maximal diffusion enhancement for passive particles in solutions of active

enzymes, taking into account fast rotational diffusion of enzymes. Similar esti-

mates for diffusion enhancement of passive particles in lipid bilayers are derived

in subsection 2.3.2.

The results are discussed in Sec. 2.4. There, we analyze the available ex-

perimental and computational data for diffusion enhancement in, respectively,

subsections 2.4.1 and 2.4.2. Conclusions and an outline for the perspectives of

further research are provided in Sec. 2.5.
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Figure 2.1: The turnover cycle and mechanochemical motions in the active dimer
model of an enzyme (see the text).

2.2 Statistical properties of force dipoles

2.2.1 The active dimer model

The simplest mechanical system that gives rise to a hydrodynamical force

dipole is a dimer. It consists of two beads 1 and 2 interacting via a potential

u(r) that depends on the distance r = |r1−r2| between them. The forces acting

on the particles are f1 = −∂u/∂r1 = f and f2 = −f . If the dimer is immersed

into a viscous fluid, the velocity V of the hydrodynamic flow far enough from

the dimer is approximately given by [2.12]

Vα =
∂Gαβ

∂Rγ
eβeγm, (2.1)

where Gαβ(R) is the mobility tensor depending on the position R of the dimer

with respect to the observation point, e = (r1 − r2)/r is the unit orientation

vector of the dimer, andm = fr is the magnitude of the force dipole. Summation

over repeated indices is assumed. The force dipole is present only if there are

nonvanishing net interaction forces, i.e., if the distance between the particles in

a dimer continues to change. As in the study [2.12], we assume that the Oseen

approximation holds. For a dimer, it is justified if the distance between the

beads is much larger than their size.

The minimal active dimer model has been proposed [2.12, 2.21] (see also



2.2. Statistical properties of force dipoles 39

review [2.23]) to imitate mechanochemical conformational motions accompany-

ing a catalytic turnover cycle in an enzyme. Note that the dimer model, with

nonreactive dissociation of substrate additionally included, was also considered

in the study [2.22].

The operation mechanism is illustrated in Fig. 2.1. Two identical beads

(green) of radius a are connected by an elastic link with a certain natural spring

length $0 and stiffness k0. A substrate particle (red) arrives (A) and binds

as a ligand to the dimer by forming an additional elastic link with stiffness

κ that connects the two beads (B). The natural length $c of this additional

link is taken to be shorter than $0. Therefore, it tends to contract the dimer

until a new equilibrium conformation (C) with a certain distance $1 between the

beads is reached. Once this has taken place, a chemical reaction, that converts

the ligand from the substrate to the product, occurs and the product (blue)

is instantaneously released (D). Following the product release, the dimer is in

the state E with the spring length $1 that is shorter than the natural length $0.

Therefore, the spring expands and the domains move apart until the equilibrium

state (F) is approached again. After that, a new substrate can bind, repeating

the turnover cycle.

It is assumed that products are immediately evacuated and therefore we do

not consider reverse product binding events. Moreover, possible dissociation

events for the substrate are neglected assuming that its affinity is high. Note

that, since the product is immediately released once it has been formed, the

ligand inside our model enzyme is always only in the substrate form. Therefore,

the dimer can be either in the ligand-free (s = 0) or the ligand-bound (s = 1)

states.

The elastic energies in these two states are

E0(x) =
k0
2
(x− $0)

2, (2.2)
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and

E1(x) =
k0
2
(x− $0)

2 +
κ

2
(x− $c)

2 = A+
k1
2
(x− $1)

2, (2.3)

where x is the distance between the beads and

A =
κk0

2(k0 + κ)
($0 − $c)

2, k1 = k0 + κ, $1 =
k0$0 + κ$c
k0 + κ

. (2.4)

The overdamped dynamics of the dimer in the ligand state s is described by

the Langevin equation

dx

dt
= −γ ∂Es

∂x
+ ξ(t), (2.5)

where γ is the mobility coefficient. To account for thermal fluctuations, this

equation includes thermal noise,

〈ξ(t1)ξ(t2)〉 = 2γkBT δ(t1 − t2), (2.6)

where kB is the Boltzmann constant and T is the temperature.

In Eq. (2.5), we have omitted hydrodynamic interactions between the beads.

They were taken into account in the study [2.22] of diffusion enhancement for

a single dimer itself. In the Oseen approximation, such interaction terms are

proportional to the small parameter a/$0, leading to corrections of the same

order for the force dipoles, neglected by us.

Stochastic transitions between the two ligand states take place at constant

rates v0 and v1 within narrow windows of width ρ near x = $0 and x = $1.

If probability distributions ps(x, t) are introduced, they obey a system of two

coupled Fokker-Planck equations

∂p0
∂t

=
∂

∂x
[γk0(x− $0)p0] + γkBT

∂2p0
∂x2

+ u1(x)p1(x)− u0(x)p0(x), (2.7)

and

∂p1
∂t

=
∂

∂x
[γk1(x− $1)p1] + γkBT

∂2p1
∂x2

+ u0(x)p0(x)− u1(x)p1(x), (2.8)

where u0(x) = v0 for $0 − ρ < x < $0 + ρ and vanishes outside of this interval;

u1(x) = v1 for $1 − ρ < x < $1 + ρ and zero outside the interval. Note that the

rate v0 of substrate binding is proportional to the substrate concentration.
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Figure 2.2: The energy diagram of the active dimer.

If the transition windows are very narrow, i.e., ρ ) $0 and ρ ) $1, one can

use the approximation

u0(x) = ν0δ(x− $0), u1(x) = ν1δ(x− $1), (2.9)

where ν0 = 2v0ρ and ν1 = 2v1ρ.

Figure 2.2 shows the energy diagram of the model. Within each cycle, the

dimer dissipates in mechanochemical motions the energy ∆E = ∆E0 + ∆E1

which is furthermore equal to the difference Esub − Eprod of the energy Esub =

E1($0) − E0($0) supplied with the substrate and the energy Eprod = E1($1) −

E0($1) removed with the product. We have

∆E =
1

2
(k0 + k1)($0 − $1)

2. (2.10)

The energy difference ∆E is always positive and, hence, the considered active

dimer represents an exothermic enzyme.

The force dipole of the active dimer is m = k0($0 − x)x for s = 0 and

m = k1($1 − x)x for s = 1. Note that therefore m ≤ k0$20/4 for s = 0 and

m ≤ k1$21/4 for s = 1.

When the transition windows are narrow, the probability rate w0 that sub-

strate binding, i.e., a transition to state s = 1, occurs per unit time in the state

s = 0 is approximately

w0 = ν0

√
k0

2πkBT
. (2.11)
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On the other hand, the probability rate w1 that product release, i.e., a transition

to state s = 0, occurs per unit time in the state s = 1 is then approximately

given by

w1 = ν1

√
k1

2πkBT
. (2.12)

These equations are derived in Appendix 2.A. Moreover, the characteristic re-

laxation times of the dimer in the states s = 0 and s = 1 are, respectively,

τ0 = (γk0)−1 and τ1 = (γk1)−1.

The parameter combinations w0τ0 and w1τ1 play an important role in deter-

mining the kinetic regimes. If the condition w0τ0 ) 1 is satisfied, equilibration

to thermal distribution in the state s = 0 usually takes place before a transition

to the state s = 1, i.e., binding of a substrate, occurs. If the opposite condition

w0τ0 + 1 holds, such transition takes place immediately after the transition

window at x = $0 is reached. If w1τ1 ) 1, the equilibration takes place in the

state s = 1 before a transition to the state s = 0, i.e., the reaction and the

product release, occurs. In the opposite limit with w1τ1 + 1, the reaction takes

place and product becomes released immediately once the respective window at

x = $1 is reached.

Note that, because the rate w0 is proportional to substrate concentration,

the condition w0τ0 + 1 corresponds to the substrate saturation regime for the

considered model enzyme. The condition w1τ1 ) 1 implies that the enzyme

waits a long time before the product is released.

2.2.2 Approximate analytical results for force dipoles

At thermal equilibrium in the absence of substrate, p1(x) = 0 and

p0(x) =

√
k0

2πkBT
exp

[
− k0
2kBT

(x− $0)
2

]
. (2.13)

Since m = k0($0 − x)x, one can easily find the equilibrium statistical distri-

bution for force dipoles by using the condition Peq(m)dm = p0(x)dx. Using,

for convenience, the dimensionless force dipole magnitude m̃ = m/(k0$20) and
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dimensionless temperature θ = kBT/(k0$20), we get

Peq(m̃) =
1√

2π(1− 4m̃)θ

{
exp

[
− 1

8θ
(1 +

√
1− 4m̃)2

]

+ exp

[
− 1

8θ
(1−

√
1− 4m̃)2

]}
. (2.14)

If θ ) 1, this distribution is approximately Gaussian and localized at m = 0,

i.e.,

Peq(m̃) =
1√
2πθ

exp

(
−m̃2

2θ

)
. (2.15)

Using the distribution in Eq. (2.14), one finds that the mean force dipole is

〈m〉eq = −kBT. (2.16)

The correlation function C(t) = 〈∆m(t)∆m(0)〉 for variations ∆m = m − 〈m〉

of force dipoles is [2.20]

Ceq(t) = k0$
2
0kBTe

−|t|/τ0 + 2(kBT )
2e−2|t|/τ0 , (2.17)

where τ0 = (γk0)−1 is the characteristic relaxation time for the dimer in the

state s = 0. As shown in Appendix 2.B, the exact relation 〈m〉 = −kBT holds

for the dimer in any steady state and, therefore, in any of these limits.

For an active dimer, approximate analytical estimates can be obtained in

the four characteristic limits described below. The two of them (A and C)

correspond to low substrate concentrations, with rare turnover cycles controlled

by the substrate supply. In regime B, mechanochemical motions are limiting the

overall catalytic rate. In other words, product formation and its release occur

once an appropriate conformation (x = $1) has been reached. In regime D, the

overall kinetic rate is, on the other hand, limited by the waiting time for product

formation and release.

A The limit of w0τ0 ) 1 and w1τ1 ) 1

If these conditions are satisfied, binding of the substrate and product release

have large waiting times. In this limit, there are two almost independent equi-

librium subpopulations of dimers in the states s = 0 and s = 1. The relative
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weights of the subpopulations are w1/(w1 + w0) and w0/(w1 + w0). Therefore,

all statistical properties are given by the sums of contributions from different

states taken with the respective weights. Particularly, the correlation function

of force dipoles is

C(t) =
w1

w0 + w1

[
k0$

2
0kBTe

−|t|/τ0 + 2(kBT )
2e−2|t|/τ0

]

+
w0

w0 + w1

[
k1$

2
1kBTe

−|t|/τ1 + 2(kBT )
2e−2|t|/τ1

]
. (2.18)

We can use the above equation to determine the nonequilibrium part of the

fluctuation intensity of force dipoles

〈∆m2〉A = 〈∆m2〉 − 〈∆m2〉eq. (2.19)

Because 〈∆m2〉 = C(0), we have

〈∆m2〉A =
w0

w0 + w1

(
k1$

2
1 − k0$

2
0

)
kBT. (2.20)

As follows from Eq. (2.17), the equilibrium fluctuation intensity is

〈∆m2〉eq = k0$
2
0kBT + 2(kBT )

2. (2.21)

Since the effective binding rate w0 of the substrate is proportional to its con-

centration c, i.e., w0 = ηc, Eq. (2.20) yields the Michaelis-Menten form of the

dependence of 〈∆m2〉A on the substrate concentration.

Remarkably, the catalytic activity of the model enzyme can thus lead not

only to some enhancement, but also to reduction of fluctuations of the force

dipoles. According to Eq. (2.20), reduction should be observed if k1$21 < k0$20.

Under this condition, the ligand-bound dimer (s = 1) is characterized by a lower

fluctuation intensity of force dipoles than the free dimer (s = 0).

B The limit of w0τ0 + 1 and w1τ1 + 1

In this limit, transitions take place once the respective transitions windows

are entered. If additionally the conditions k0$20 + kBT and k1$21 + kBT are

satisfied, thermal fluctuations can be neglected and the dimer essentially behaves

as a deterministic oscillator. Then, the solution can be obtained by integrating
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Eq. (2.5) with appropriate boundary conditions. This yields x(t) = $1+($0−$1−

ρ)e−t/τ1 for 0 < t < T1 and x(t) = $0+($1−$0+ρ)e−(t−T1)/τ0 for T1 < t < Tc. Here,

Tc is the oscillation period of the active dimer and T1 is the duration of the cycle

time when the dimer is in the ligand-bound state s = 1. If transition windows

are narrow, i.e., the condition ρ) ($0 − $1) is satisfied, we approximately have

T1 = τ1 ln

(
$0 − $1
ρ

)
, (2.22)

and

Tc = (τ0 + τ1) ln

(
$0 − $1
ρ

)
. (2.23)

The respective time-dependent force dipole is m(t) = k1($1 − x)x for 0 < t < T1

and m(t) = k0($0 − x)x for T1 < t < Tc. Hence, it is negative for s = 1 and

positive for s = 0.

The force dipole varies within the interval mmin < m < mmax, where the

minimum value mmin = −k1$0($0 − $1) is taken at t = 0, i.e., in the state s = 1

just after substrate binding, and the maximum value mmax = k0$1($0 − $1) is

reached at t = T1, in the state s = 0 just after product release (here we again

assume that transition windows are narrow). Note that, if thermal fluctuations

were present, the force dipoles could however have also taken the values outside

of this interval.

It can be checked by direct integration that the period-averaged force dipole

for the deterministic active dimer is 〈m(t)〉det = 0. The correlation function for

the deterministic oscillating dimer is defined as the period average

Cdet(t) =
1

Tc

∫ Tc

0

dhm(t+ h)m(h). (2.24)

The explicit analytical form of this periodic correlation function is too compli-

cated and we do not give it (analytical results for correlation functions are also

omitted below in the limits C and D).

The mean-square intensity of force dipoles is 〈m(t)2〉det = Cdet(0). In the
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limit ρ→ 0, we approximately have

〈m(t)2〉det =
k0k1

12(k0 + k1)

[
ln

(
$0 − $1
ρ

)]−1

($0 − $1)
2

×
[
k0($

2
0 + 2$0$1 + 3$21) + k1(3$

2
0 + 2$0$1 + $21)

]
. (2.25)

When k1 ∼ k0, this equation yields the scaling 〈m(t)2〉det ∼ k2
0.

C The limit of w0τ0 ) 1 and w1τ1 + 1

If these conditions are satisfied, the model enzyme waits a long time for

binding of a substrate (because the substrate concentration is low), but then

it performs a rapid reaction cycle. An approximate solution in this regime

can be obtained if, additionally, the conditions k0$20 + kBT and k1$21 + kBT are

satisfied, i.e., that thermal fluctuations are weak. Moreover, we shall assume that

the transition window for substrate binding is narrow, i.e., the approximation

in Eq. (2.9) holds for u0(x).

In this case, the dependence x(t) consists of a sum of statistically independent

rare pulses, each corresponding to one reaction cycle:

x(t) =
∑

j

z(t− tj), (2.26)

where z(t) = $1+($0− $1)e−t/τ1 for 0 < t < T1 and z(t) = $0+($1− $0)e−(t−T1)/τ0

for t > T1, with T1 given by Eq. (2.22). The pulses appear at random time

moments tj and the probability of their appearance per unit time is w0.

Moreover, we also have

m(t) =
∑

j

ζ(t− tj), (2.27)

where ζ(t) = k1($1 − z(t))z(t) for 0 < t < T1 and ζ(t) = k0($0 − z(t))z(t) for

t > T1.

Hence, this represents a random Poisson process. Its first two statistical

moments are approximately 〈m(t)〉 = 0 and

〈m2(t)〉 = w0

∫ ∞

0

dt ζ2(t)

=
1

12
w0τ0($0 − $1)

2
[
k2
0($

2
0 + 2$0$1 + 3$21) + k0k1(3$

2
0 + 2$0$1 + $21)

]
. (2.28)
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Taking into account Eq. (2.11), we notice that, when k1 ∼ k0, the scaling

〈m2(t)〉 ∼ k3/2
0 should hold.

D The limit of w0τ0 + 1 and w1τ1 ) 1

This situation corresponds to substrate saturation and a long waiting time

for the reaction and product release in the ligand-bound state. A derivation,

similar to that given above, shows that, if k0$20 + kBT and k1$21 + kBT , we

approximately have 〈m(t)〉 = 0 and

〈m2(t)〉 = 1

12
w1τ1($0 − $1)

2
[
k2
1(3$

2
0 + 2$0$1 + $21) + k0k1($

2
0 + 2$0$1 + 3$21)

]
.

(2.29)

If we take into account Eq. (2.12), it can be noticed that, when k1 ∼ k0, scaling

〈m2(t)〉 ∼ k3/2
0 is again obtained.

2.2.3 Numerical simulations

Numerical simulations can yield statistical properties of force dipoles for

selected parameter values in the regions where there are no approximate ana-

lytical results. Below in this section, we focus on the situation under substrate

saturation, but with the waiting time for product release comparable to the con-

formational relaxation time (thus, lying between the limits B and D). We shall

consider a situation where the condition kBT ) k0$20 is satisfied, so that thermal

fluctuations are relatively weak.

Before proceeding to simulations, the model was nondimensionalized. The

dimensionless variables were t̃ = t/τ0, x̃ = x/$0, and m̃ = m/(k0$20). The dimen-

sionless transition rates were ṽ0 = v0τ0 and ṽ1 = v1τ0, while the dimensionless

temperature was θ = kBT/(k0$20). Stochastic differential equation (2.5) was nu-

merically integrated, complemented by transitions between the ligand states [see

the source code in Appendix 2.E].

In the simulations, we had $1 = 0.55$0, k1 = 2k0, and ρ = 0.01$0. We have

kept constant ṽ1 = 2, but varied the parameter ṽ0. A relatively low dimensionless

temperature θ = 0.0018 was chosen to satisfy the condition kBT ) k0$20. Under
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such choice, 〈m(t)2〉det/〈∆m2〉eq = 19.3 and w1τ1 = 0.27.

Note that, because of the last condition, there was a significant random varia-

tion in the waiting times for substrate conversion and product release. Moreover,

waiting times for substrate binding, characterized by the rate w0, could also vary.

These effects kept the model stochastic even when thermal noise was small.

Figure 2.3 shows typical time dependences of the force dipoles. In Fig. 2.3(a),

the waiting time for substrate binding is long. Therefore, the dimer spends

most of the time in the ligand-free state s = 0. Within the time shown, only

one turnover cycle has taken place. For the force dipole, the cycle consists of

a negative spike, just after binding of the substrate, and the following positive

spike, just after the product release. In Fig. 2.3(b), the substrate binding rate

is increased. As a result, the dimer is frequently cycling, already resembling an

oscillator. Nonetheless, the random variation of the times between the cycles is

relatively large.

Probability distributions of force dipoles are shown in Fig. 2.4. The black

curve is the distribution for passive dimers in the absence of the substrate,

given by Eq. (2.14). It represents a narrow Gaussian peak at m = 0. The

distribution at ṽ0 = v0τ0 = 0.03 (red) is almost indistinguishable from it. The

blue curve is the distribution for active dimers corresponding to Fig. 2.3(b).

Now, the distribution is more broad and the central peak is smaller. The tail

on the left side from the peak and the shoulder on its right side are due to the

nonequilibrium activity of force dipoles.

The dependence of the nonequilibrium part of the fluctuation intensity of

force dipoles, Eq. (2.19), on the substrate binding rate v0, proportional to sub-

strate concentration, is shown in Fig. 2.5. It can be well fitted to the Michaelis-

Menten function (the solid curve). The saturation magnitude is close to the value

of 0.033 predicted at such parameters for the deterministic dimer by Eq. (2.25).

Normalized correlation functions of force dipoles at different substrate bind-

ing rates are shown in Fig. 2.6. In the absence of the substrate (for v0 = 0)
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Figure 2.3: Time dependence of dimensionless force dipoles m̃ = m/(k0$20) on
time for (a) ṽ0 = 0.03 and (b) ṽ0 = 3. Dashed lines show the lower bound
m̃min = −0.9 for the deterministic oscillatory dimer and the absolute upper
bound m̃max = 0.25 for force dipoles.

the dependence is monotonous (it is given by Eq. (2.17)). As the substrate con-

centration is increased, damped oscillations in the correlation function become

observed, thus signaling the onset of the active oscillatory behavior that prevails

over the thermal noise.

The correlation functions could be fitted (dashed curves in Fig. 2.6) to the

dependence

C(t)/C(0) =
1

cosα
exp(−Γ|t|) cos(Ω|t|− α). (2.30)

Figure 2.7 shows how the dimensionless relaxation time 1/(Γτ0), the dimension-

less oscillation period 2π/(Ωτ0) and the phase shift α depend on the substrate

binding rate. The oscillation period under saturation conditions is still larger

than Tc/τ0 = 5.7 for the deterministic dimer according to Eq. (2.23). This is

because of an additional waiting time for product release. The characteristic

relaxation time is about 1/(Γτ0) = 2.

It should be stressed that the form in Eq. (2.30) of the correlation function

would not hold in the deterministic limit. Indeed, the oscillations stay harmonic

in the limit of an infinite correlation time. However, the deterministic oscillations

are actually nonharmonic, as seen in Fig. 2.3.
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Figure 2.4: Probability distributions of force dipoles m̃ for passive (black curve,
v0 = 0) and active (red curve, ṽ0 = 0.03, and blue curve, ṽ0 = 3) dimers.
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Figure 2.5: Dependence of the nonequilibrium part 〈∆m2〉A of the fluctuation
intensity of force dipoles on the substrate binding rate v0 (dots). The solid curve
is a fit to the Michaelis-Menten function.

There are two effects that make the dimer model stochastic, i.e., the ther-

mal noise in the dynamical equation (2.5) and random transitions between the

ligand states s = 0 and s = 1. When θ → 0, the thermal noise vanishes, but ran-

dom transitions between the states nonetheless remain. This second stochastic

effect is responsible for the decay in the correlation function. As shown in Ap-

pendix 2.C, the dependence of the correlation function in Eq. (2.30) corresponds

to an approximate solution of the master equations (2.7) and (2.8).
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Figure 2.6: Normalized correlation functions of force dipoles at different sub-
strate binding rates: v0 = 0 (absence of substrate, black), ṽ0 = 0.03 (red), and
ṽ0 = 3 (blue). The correlation function for passive dimers (black) is given by
Eq. (2.17). Dashed curves are fits to the dependence in Eq. (2.30).

2.2.4 Estimates for hydrodynamic force dipoles of en-

zymes

Above, statistical properties of force dipoles were analyzed in the framework

of an idealized model of the active dimer. Now, the obtained results can be

applied to approximately estimate the force dipoles for real enzymes and protein

machines. To do this, the relationship between such a simple model and the

actual proteins needs to be first discussed.

Proteins fold into a definite conformation that however incorporates many

different substates. Slow dynamics of proteins represents wandering over a

Markov network of such metastable conformational substates [2.24]. In all-atom

molecular dynamics (MD) simulations, transitions within tens of nanoseconds

to the nearest metastable states can be clearly seen. Long MD simulations show

motions over a set of these states extending to the millisecond timescales [2.25].

Single-molecule fluorescence correlation spectroscopy experiments with choles-

terol oxidase revealed that thermal conformational fluctuations in this enzyme,

in the absence of the substrate, had correlations persisting even over about 1.5 s

time [2.26, 2.27]. In the coarse-grained structure-based simulations of proteins,
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Figure 2.7: The dependences of the relaxation time 1/Γ (circles), oscillation
period 2π/Ω (triangles) and phase shift α (squares) on substrate binding rate
v0.

such as modeling based on elastic networks, the rugged atomic energy land-

scape becomes smoothed [2.28], thus yielding continuous slow conformational

dynamics described by a set of effective collective coordinates.

In a detailed study of adenylate kinase [2.29], combining all-atom MD simu-

lations with single-molecule fluorescence resonance energy transfer and NMR, it

was found that, in this characteristic mechanochemical enzyme, conformational

substates lie along a trajectory that connects the initial open apo conformation

to the final catalytically efficient closed state. Thus, the energy landscape has

a valley that guides towards the optimal protein state; the motion along such a

valley can be described by a single coordinate. Similar organization of the en-

ergy landscape has been noticed in structure-based coarse-grained modeling of

protein machines and molecular motors, such as myosin V and F1-ATPase [2.30]

and HCV helicase [2.31].

Typically, mechanochemical enzymes and molecular machines represent pro-

teins with domain structure. Slow functional conformational dynamics in these

proteins consists in relative motions of the domains that can be often charac-

terized by a single coordinate, such as a hinge angle or a distance between the

centers of mass of two protein domains. This leads to the reduced models for
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proteins, with just one or a few mechanical coordinates [2.23]. The active dimer

is a model belonging to this class. Note that previously a similar simple model

with three beads was employed to estimate the magnitude of self-propulsion

effects in the enzymes [2.7]. In the framework of the active dimer model, statis-

tical properties of force dipoles in different kinetic regimes can be analyzed and

characteristic order-of-magnitude estimates for the intensity of such dipoles for

typical enzymes and protein machines can be derived.

In Sec. 2.2.2, four kinetic regimes have been outlined. The two of them (A

and C) correspond to low substrate concentrations, with rare turnover cycles

controlled by the substrate supply. Below, we focus on the substrate satura-

tion regimes B and D where high catalytic activity and, thus, the strongest

nonequilibrium force dipoles can be expected.

In regime B, mechanochemical motions are limiting the overall catalytic rate.

In other words, product formation and its release occur once an appropriate

conformation (x = $1) has been reached. Such regime is characteristic, for

example, for adenylate kinase where the turnover time is limited by the time

(about 1ms) of the conformational transition from the open to the closed state,

with the reaction AMP + ATP → 2ADP rapidly occurring once the latter state

is reached [2.29].

In regime D, the overall kinetic rate is, on the other hand, limited by the

waiting time for product formation and release. This regime is typical for protein

machines and motors such as myosin V. In each operation cycle of this molecular

motor, catalytic hydrolysis of substrate ATP into product ADP takes place. The

cycle duration of 66ms under ATP saturation is limited by waiting for ADP

release [2.32]. The conformational transition from the open to the closed state,

i.e., the lever-arm swing after ATP binding, takes place within a much shorter

millisecond time.

The principal parameters of the active dimer model are stiffness constants

k0 and k1 and inter-domain distances $0 and $1 in the open (s = 0) and closed
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(s = 1) conformations, respectively. The typical size of a protein is of the order

of tens of nanometers and this would be also the characteristic distances $0 and

$1 between the domains. Moreover, if the open and closed states are distinctly

different, as, for example, in adenylate kinase or myosin, the change ∆$ = $0−$1

is comparable in magnitude to $0 and $1. As characteristic values for order-of-

magnitude estimates, one can, for example, choose $0 = 10nm and $1 = 5nm in

the open and the closed states, respectively.

In the active dimer, two domains (beads) are connected by a spring. In real

proteins, they can be, instead, connected by a hinge with the elastic energy

E =
1

2
K(Θ−Θ0)

2, (2.31)

which depends on the deviation of the hinge angle Θ from the equilibrium angle

Θ0. This can also be approximately written as

E =
1

2
k(x− $0)

2, (2.32)

so that the hinge is described as an elastic spring with x = $Θ, $0 = $Θ0 and

the effective stiffness k = K/$2, where $ is the characteristic linear size of the

domains connected by the hinge.

The stiffness of the converter hinge in myosin V was estimated in single-

molecule experiments by Kinoshita with coworkers [2.33] to be about K =

5 kBT/rad
2 both in the open and the closed states. On the other hand, the data

of high-speed AFM observations by Ando with coworkers [2.34] corresponds to

a higher value of K = 23 kBT/rad
2. The difference may be due to the fact

that the hinge becomes softer for larger angles. In our estimates below, we take

K = 10 kBT/rad
2. Choosing $ = 10nm, this leads to k = 0.1 kBT/nm2.

As noticed above, in adenylate kinase, the overall turnover rate under sub-

strate saturation in an enzyme is limited by conformational transitions between

the open and closed states (and hence the turnover rate is about 103 s−1). The

maximum intensity of force dipoles can be estimated by using Eq. (2.25). If the

parameter values k0 = k1 = 0.1 kBT/nm2, $0 = 10nm, $1 = 5nm and ρ = 1nm
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are chosen, the nonequilibrium mean-square fluctuation intensity 〈∆m2〉A of

force dipoles in such enzymes is estimated as approximately 80 [pN·nm]2. This

is similar to the previous estimate of 100 [pN·nm]2 in Ref. [2.12] based on typical

stall forces in molecular motors.

In more slow enzymes and protein machines with the turnover numbers of

tens per second, the turnover is limited by product formation and its release. In

this case, the intensity of force dipoles can be estimated using Eq. (2.29). There,

the rate w1 of product formation and release is approximately the same as the

overall turnover rate, whereas τ1 corresponds to the conformational transition

time. Choosing the turnover rate of 15 s−1, as in myosin V, and the conforma-

tional transition time of 1ms and keeping the same other parameters as above,

the nonequilibrium mean-square fluctuation intensity of force dipoles can then

be estimated as about 4 [pN·nm]2. This is much smaller than the above esti-

mate for fast enzymes because nonthermal mechanical forces are only generated

in conformational transitions of about 1ms in duration. It represents only a

small fraction of the entire cycle time of tens of milliseconds in such enzymes or

protein machines.

While typical enzymes have turnover times between milliseconds and tens

of milliseconds, there are also very slow enzymes, such as tryptophan synthase

with the turnover time of 0.5 s [2.35], and enzymes that are very fast, such as

catalase (17µs) or urease (59µs) [2.36]. Moreover, transition times from open

to close confirmations can be also very short in some enzymes. For example, for

phosphoglycerate kinase (PGK), neutron spin-echo spectroscopy yields confor-

mational transition times of the order of tens of nanoseconds [2.37]. This was

also observed in coarse-grained MD simulations for PGK [2.38]. Therefore, it is

interesting to discuss under what general conditions stronger force dipoles can

be expected in enzymes.

Equation (2.10) relates the energy (generally, enthalpy) dissipated in mechanochem-

ical motions within the turnover cycle of an active dimer to the stiffness of the
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dimer and the magnitude of conformational changes in it. While it has been

derived for an idealized model, it can also be used for order-of-magnitude es-

timates in real enzymes. Taking, for example, k0 = k1 = 0.1 kBT/nm2 and

$0 − $1 = 10nm for myosin, we obtain ∆E = 10 kBT , which is in reasonable

agreement with the energy of about 20 kBT supplied to this molecular motor

with ATP (only half of this energy is used in the power stroke).

Note that, assuming for simplicity that k0 = k1 = k, Eq. (2.10) can be also

written as

k =
∆E

∆$2
, (2.33)

thus expressing the stiffness in terms of the energy∆E dissipated in mechanochem-

ical motions and the conformational change ∆$ = $0 − $1. An enzyme is stiffer

if the same energy is dissipated within a conformational transition of a smaller

magnitude.

Suppose that conformational changes are indeed small in an enzyme and,

moreover, its turnover rate is limited by conformational transitions within the

cycle. Then, Eq. (2.25) can be used to estimate the intensity of force dipoles.

For approximate numerical estimates, it can be written in the form

〈∆m2〉 = ζ0k
2$20($0 − $1)

2, (2.34)

where ζ0 is a dimensionless factor of order unity that also includes the logarithmic

term and we have taken k0 = k1 = k. Note that this estimate holds assuming

that the force dipoles in the catalytically active enzyme are much stronger than

those due to thermal fluctuations in the absence of substrate.

Substituting k from Eq. (2.33), a simple order-of-magnitude estimate is ob-

tained

〈∆m2〉 = ζ1

(
$0
∆$

)2

∆E2, (2.35)

where ζ1 is another dimensionless factor of order unity. Moreover, by using
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Eq. (2.21) and (2.33), we furthermore get

〈∆m2〉
〈∆m2〉eq

= ζ1
∆E

kBT
, (2.36)

if the condition k$20 + kBT holds.

These results show that the intensity of force dipoles is strongly sensitive to

the magnitude of mechanochemical motions within the turnover cycle. More-

over, they show that, in strongly exothermic enzymes, force dipoles are greatly

enhanced when catalytic activity takes place.

The above-mentioned catalase and urease enzymes are not only exception-

ally fast, but also highly exothermic, with ∆H = 100 kJ/mol for catalase and

∆H = 59.6 kJ/mol for urease [2.36]. Hence, large energies of 42 kBT or 25 kBT

are released in them and dissipated into heat within very short microsecond

cycle times. Furthermore, at least for catalase, it is known that functional

conformational changes are involved within the turnover cycle, but their magni-

tude is small [2.39]. It has been previously proposed [2.36] that chemoacoustic

intramolecular effects caused by strong heat release may even lead to hydrody-

namic self-propulsion of these enzymes, although subsequent examination could

not confirm this [2.7]. These enzymes do not have a domain structure and

therefore the results of our analysis based on the dimer model are not directly

applicable to them. Nonetheless, they suggest that hydrodynamic force dipoles

in them may be very strong.

2.3 Diffusion enhancement for passive particles

in active enzyme solutions

The most important application of the obtained results for force dipoles is

that they allow to obtain more accurate analytical and numerical estimates for

diffusion enhancement of passive particle in solutions of active enzymes. In the

previous studies [2.12, 2.14], the magnitude of diffusion enhancement has been

expressed in terms of the statistical properties of hydrodynamic force dipoles.
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However, because these properties were only poorly known, precise estimates for

such magnitude could not be obtained. This has led to difficulties in the inter-

pretation of experimental results and in the analysis of the computational data.

In this section, we use the statistical properties of force dipoles for active dimers,

determined above in Sec. 2.2, to estimate the diffusion enhancement effects for

enzymes in water solution and for active protein inclusions in biomembranes.

2.3.1 Diffusion effects of enzymes in water solutions

As previously shown [2.12, 2.14], the change DA in the diffusion coefficient

of passive tracer particles in a three-dimensional (3D) solution is given by

DA =
n

60πµ2$cut
(χ− χeq), (2.37)

where n is the concentration of active enzymes, µ is viscosity, and $cut is a

microscopic cut-off length of the order of a protein size. Moreover, we have

χ =

∫ ∞

0

dtC(t)σ(t), (2.38)

where C(t) is the correlation function of force dipoles corresponding to the en-

zymes and σ(t) is the orientational correlation function for them; χeq is given

by the same equation, but with C(t) replaced by Ceq(t).

The orientational correlation function has the form

σ(t) = exp(−t/τrot), (2.39)

where τrot is the orientational correlation time. As seen from Eqs. (2.37), (2.38)

and (2.39), the magnitude of diffusion enhancement is sensitive to the relation-

ship between the correlation time of force dipole and the orientational correlation

time.

According to the Stokes equation, rotational diffusion coefficient for a spher-

ical particle of radius R is

Drot =
kBT

8πµR3
. (2.40)

The orientational correlation time is defined as τrot = 1/Drot. Since proteins
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are not spheres, their orientational correlation times are shorter than given by

the Stokes estimate. Even in crowded solutions, they do not exceed a microsec-

ond [2.40–2.42]. For active dimers, the orientational correlation times can be

estimated by using Eq. (2.40) with R = $0.

For the active dimer model, the correlation functions of force dipoles and,

therefore, their correlation times were analytically determined at equilibrium

[see Eq. (2.17)] and in the limit A [see Eq. (2.18)]. Moreover, they were also

numerically determined, as shown in Fig. 2.6. As follows from these results, the

correlation times for force dipoles are determined by conformational relaxation

times τ0 and τ1. In the discussion of conformational relaxation phenomena in

proteins in subsection 2.2.4, we have noticed that slow conformational relaxation

processes, involving relative domain motions in real enzymes, would usually lie in

the microsecond to millisecond range. Hence, correlation times for force dipoles

of the enzymes would be typically longer than their orientational correlation

times.

Below, we assume that the orientational correlation time is much shorter

than the correlation time for force dipoles. By using Eq. (2.39) and putting

C(t) ≈ C(0) = 〈∆m2〉 in Eq. (2.38), we approximately find

χ− χeq = τrot〈∆m2〉A. (2.41)

Hence, the change in the diffusion coefficient can be estimated as

DA =
τrotn

60πµ2$cut
〈∆m2〉A. (2.42)

Substituting approximate analytical expressions for 〈∆m2〉A in different limiting

regimes, obtained in subsection 2.2.2, or using the numerical data from subsec-

tion 2.2.3, we can now estimate and analyze diffusion enhancement.

Particularly, it was found in subsection 2.2.3 that 〈∆m2〉A for active dimers

has a Michaelis-Menten dependence on the substrate concentration. As follows

from the above equation, the same dependence should hold for DA. As could

have been expected, the highest diffusion enhancement is reached under the
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condition of substrate saturation for the enzymes. Under substrate saturation,

the intensity of force dipoles depends, as demonstrated in subsections 2.2.2 and

2.2.3, on the properties of the turnover cycle of an enzyme. The highest inten-

sity is found in regime B, i.e., when there is no long waiting time for product

release, and the turnover rates are limited by conformational transitions within

the catalytic cycle (adenylate kinase is an example of such an enzyme).

In such asymptotic regime, 〈∆m2〉A is given by Eq. (2.35) provided that the

condition k$20 + kBT holds. Substituting this expression into Eq. (2.42), we

obtain

DA

DT
=

νR0

R0 + $0

(
$0
∆$

)2 ($0
$

)3 (∆E

kBT

)2

. (2.43)

Here, R0 is the radius of a tracer particle, $0 is the characteristic size of an enzyme

(i.e., the dimer length), ∆$ specifies the magnitude of the conformational change,

∆E is the free energy supplied with the substrate and dissipated within each

cycle. For the equilibrium diffusion constant DT, the Stokes equation

DT =
kBT

6πµR0
. (2.44)

has been used. Moreover, the microscopic cut-off length is chosen as $cut =

$0 +R0 and ν = 4πζ1/5 is a numerical factor of order unity.

Equation (2.43) can be employed to estimate the maximum relative diffusion

enhancement for passive particles that can be obtained, under substrate satura-

tion, in water solutions of enzymes. For numerical order-of-magnitude estimates,

we consider exothermic enzymes with ∆E = 10 kBT and ∆$ = 0.1$0. As the

enzyme concentration, we take n = 1µM. This corresponds to a noncrowded

solution where the mean distance between the enzymes is about ten times larger

than their size ($ ∼ 10$0). Moreover, we consider passive particles with the sizes

comparable to that of an enzyme (R0 ∼ $0). Under these conditions, we have

DA ∼ 10DT, i.e., diffusion of tracer particles is ten times faster in the solution

of catalytically active enzymes.

Dependence of diffusion enhancement on the orientational correlation time
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is additionally discussed in Appendix 2.D.

2.3.2 Diffusion effects of active protein inclusions in biomem-

branes

It is known that, on the length scales shorter than the Saffman-Delbrück

length of about a micrometer, lipid bilayers behave as 2D fluids [2.8]. Similar

to enzymes in water solutions, active protein inclusions (such as ion pumps

or transporters) can cyclically change their shapes inside a lipid bilayer within

each ligand turnover cycle. Hence, they behave as hydrodynamical force dipoles

within a fluid lipid bilayer. Therefore, diffusion enhancement is expected for

biomembranes when nonequilibrium conformational activity of proteins takes

place [2.12].

A significant difference to water solution is that, for the biomembranes as

2D fluids, hydrodynamic diffusion enhancement effects are nonlocal. For such

systems, Eq. (2.37) is replaced by [2.12, 2.14]

DA,αα′(R) =
1

32π2µ2
2D

(χ− χeq)

∫
dr

rαrα′

r4
n2D(R+ r). (2.45)

Here, χ is again given by Eq. (2.38) with σ(t) being the planar orientational

correlation function for protein inclusions. Moreover, µ2D is the 2D viscosity of

the lipid bilayer, related as µ2D = hµ3D to its 3D viscosity µ3D (where h is the

bilayer thickness); n2D is the 2D concentration of active inclusions within the

membrane.

For numerical estimates, we assume that active proteins occupy a small cir-

cular region (a raft) of radius Rm (shorter than the Saffman-Delbrück length)

within a membrane. Then, diffusion enhancement for a passive particle of radius

R0 located in the center of the disc is [2.12, 2.14]

DA = ζm
n2D

µ2
2D

(χ− χeq), (2.46)

where ζm = (1/32π) ln(Rm/$cut), $cut = R0+ $0, and χ is given by the integral in

Eq. (2.38) where, however, σ(t) is the planar orientational correlation function
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for proteins inside a membrane.

The viscosity µ3D of lipid bilayers is about 103 times higher than that of

water and, therefore, both translational and rotational diffusion is much slower

in them. From experiments, it is known that diffusion constants for proteins in

lipid bilayers are about DT = 10−10 cm2/s, i.e., about 103 times smaller than in

water for similar proteins. One can therefore expect that rotational diffusion of

proteins in lipid bilayers would be slowed by about a factor of 103 too, yielding

orientational correlation times τrot that might approach a millisecond, still being

shorter than the turnover time of an enzyme.

The magnitude of diffusion enhancement in Eq. (2.46) can be determined

by modeling protein inclusions as active dimers that lie flat in the membrane.

Then, the same estimate (2.35) for 〈∆m2〉A can be used. Combining all terms,

diffusion enhancement in Eq. (2.46) for a passive particle in the center of a

protein raft approximately is

DA = νmτrot

(
$0
∆$

)2 ( ∆E

h$2Dµ3D

)2

, (2.47)

where the dimensionless prefactor is νm = ζ1ζm and $2D = n−1/2
2D is the mean

distance between inclusions in the membrane.

To obtain a characteristic order-of-magnitude estimate, the 3D viscosity of

the lipid bilayer is chosen as µ3D = 1Pa·s and the thickness of the bilayer as h =

1nm. For protein inclusions, we assume that ∆E = 10 kBT and ∆$ ∼ $0. The

orientational correlation time is taken to be τrot = 100µs and the mean lateral

distance between the proteins is $2D = 10nm. For such parameter values, the

maximal possible diffusion enhancement under substrate saturation conditions

is about DA = 10−9 cm2/s. For comparison, Brownian diffusion constants for

proteins in lipid bilayers are of the order of 10−10 cm2/s and diffusion constants

for lipids are about 10−8 cm2/s.
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2.4 Discussion

Using the results of our study, available experimental and computational

data on diffusion enhancement in solutions of catalytically active enzymes can

be discussed.

2.4.1 Experimental data

Diffusion enhancement for the enzymes has been reported in solutions of sev-

eral catalytically active enzymes, at the concentrations varying between 1 nM

and 10 nM [2.36, 2.43–2.46]. With the exception of aldolase [2.43] (for which,

however, the enhancement could not be independently confirmed [2.47]), all

these enzymes were exothermic and had high turnover rates of about 104 s−1.

The enhancement was reported not only for the enzymes themselves, but also

for inert molecules (tracers) surrounding them [2.44, 2.45]. The enzyme concen-

tration dependence of the diffusion enhancement effects could not however be

detected [2.46].

It does not seem plausible that such experimental data can be understood

in the framework of the original theory [2.12] and its subsequent extensions,

including the present work. The fact that a significant diffusion enhancement

(by tens of percent) was observed already at low nanomole concentrations can

still be perhaps explained by assuming that, for some reasons, the force dipoles

of specific enzymes with high catalytic turnover rates were exceptionally strong.

However, the absence of a dependence of the experimentally observed diffusion

enhancement on the enzyme concentration clearly contradicts the theory [2.12]

where diffusion enhancement arises as a collective hydrodynamic effect. Effec-

tively, diffusion enhancement was observed in the experiments [2.36, 2.43–2.46]

already for single molecules of enzymes.

When our study was completed, an interesting publication [2.48] has ap-

peared where diffusion enhancement was demonstrated by a different method

for several other reactions. Since catalyst’s diffusion was not affected by its

concentration, this was again a single-particle property not covered by the the-
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ory [2.12].

Experiments on optical tracking of particles in animal cells [2.49] and in

bacteria or yeast [2.50] have been furthermore performed. They have shown

that, when metabolism was suppressed (by depletion of ATP), diffusion dropped

to undetectable levels [2.49, 2.51] or it was much slowed down and replaced

by subdiffusion characteristic for a colloidal glass [2.50]. Strong reduction of

diffusion under metabolism suppression was moreover found in various cytoplasm

extracts [2.52].

It should be also noted that diffusion enhancement has been experimentally

observed within chromatin in a living biological cell [2.53]. This was explained by

active operation of molecular machines involved in transcription and translation

of DNA [2.54].

The cytoplasm of a living cell represents a crowded solution of proteins. In

bacteria, the volume fraction of proteins in cytosol is about 30 percent [2.55],

with the highest concentrations of the order of 100µM reached for glycolysis

enzymes. Most of the enzymes in the cell are mechanochemical, i.e., they ex-

hibit conformational changes in their catalytic cycles. Typical turnover times of

enzymes in a biological cell are of the order of 10ms.

According to the previous [2.12] and current estimates, substantial diffusion

enhancement due to hydrodynamic collective effects should thus be expected

under metabolism in the cytoplasm. There are, however, also other mechanisms

that can contribute to diffusion enhancement in the cells.

The cytoskeleton of animal cells represents an active gel, with numerous

myosin molecular motors operating within it. It is known that the activity

of the motors can lead to development of nonequilibrium fluctuations in the

cytoskeleton which induce in turn fluctuations and diffusion enhancement in the

cytosol [2.17, 2.51, 2.56]. The skeleton of bacteria and yeast is however passive;

moreover, metabolic diffusion enhancement in such cells could also be observed

when their skeleton was chemically resolved [2.50]. Therefore, the active gel
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mechanism [2.56] cannot account for the effects observed in them.

On the other hand, under high crowding characteristic for cytoplasm, pro-

teins are frequently colliding and direct interactions between them often take

place [2.40, 2.42]. It is known that, for dense colloids, glass behavior can be

expected, with the transport and relaxation phenomena strongly slowed down

in them [2.57]. Indeed, such behavior could be observed both in the cells [2.50]

and in the extracts [2.52] in the absence of metabolism.

It has been recently shown that, when the particles forming a glass-like

colloid, cyclically change their shapes, the colloid gets fluidized and classical

transport properties become restored [2.58, 2.59]. Even in the absence of hydro-

dynamic interactions, conformational activity of proteins, at the rates of energy

supply of about 10 kBT per a protein molecule per a cycle, can lead to diffusion

enhancement by one order of magnitude [2.58]. This provides an additional, non-

hydrodynamic, mechanism that can contribute to the experimentally observed

diffusion enhancement in living biological cells.

In summary, the analysis of the available experimental data reveals that the

predicted diffusion enhancement [2.12] for passive particles caused by collective

catalytic activity of enzymes could not so far been reliably confirmed.

2.4.2 Computational data

Large-scale computer simulations for colloids of active dimers have been per-

formed by Dennison, Kapral and Stark [2.20]. In these simulations, the solvent

was explicitly included and the multiparticle collision dynamics (MPCD) approx-

imation [2.60] was employed, thus allowing to fully account for hydrodynamic

effects.

To facilitate the comparison, we first give a summary of the essential pa-

rameter values in the study [2.20], using the current notations employed by us.

The natural lengths of the dimer in two ligand states were $0 and $1 = $0/2,

and the spring constants were k0 and k1 = 2k0. The dimensionless spring con-

stant k$20/(kBT ), characterizing stiffness of the dimer, was varied between 144
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and 1440. The energy ∆E = (1/2)(k0 + k1)($0 − $1)2, supplied to a dimer and

dissipated by it as heat within a single cycle, was changing therefore between

121.5 kBT and 1215 kBT . The simulations were performed under substrate satu-

ration conditions. Product formation and release were possible within a window

of half-width ρ = 0.025$0 near x = $1. The rate v1 of this transition could be

varied in the simulations by a factor of 5.

The Langevin equation (2.5) with viscous friction and thermal noise was not

used. Instead, collisions between the two beads of the dimer and the solvent

particles were explicitly taken into account in the framework of MPCD. For a

single passive dimer, the equilibrium correlation function of force dipoles Ceq(t)

was computed yielding the correlation time for fluctuations of its force dipole;

this function could be well fitted to the theoretical dependence in Eq. (2.17).

Note that, when k0$20/(kBT ) + 1, the relaxation time τ0 = (γk0)−1 of the dimer

should be close to this correlation time. Moreover, we have τ1 = (γk1)−1 = τ0/2.

Using such estimates, it can be shown that w1τ1 varied between 0.001 and 0.1

in the simulations [2.20]. Because substrate saturation was assumed, conditions

w0τ0 + 1 and w1τ1 ) 1 corresponding to the limit D in Sec. 2.2.2 were therefore

approximately satisfied.

For single active dimers, correlation functions C(t) of force dipoles were

determined [2.20]. They showed damped oscillations and were similar to the

correlation function for v0τ0 = 3 in Fig. 2.6. The correlation times varied, but

remained of the same order of magnitude as the correlation time of the passive

dimer. The force-dipole intensity 〈∆m2〉 of active dimers was by about an

order of magnitude larger than 〈∆m2〉eq for the passive ones. Depending on the

parameters, it scaled as kα
0 with the exponent α in the range between 1.2 and

1.6, comparable with the exponent of 1.5 in Eq. (2.29).

Orientational correlation functions σ(t) were furthermore computed for single

dimers [2.20]. Remarkably, it was found that the orientational correlation time

τrot was sensitive to the conformational activity of the dimer, getting shorter by
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about an order of magnitude when such activity was switched on. Nonetheless,

in all simulations τrot was larger than the force dipole correlation time.

Multiparticle 3D computer simulations of colloids formed by active dimers

were further performed [2.20]. In the simulations, the truncated potential

u(r) = 4ε

[(
2r0
r

)48

−
(
2r0
r

)24

+
1

4

]
, (2.48)

for r < 21/24(2r0) and zero otherwise, with ε = 2.5 kBT and r0 = 1.075$0, was

used to describe steep repulsive interactions between the beads belonging to

different dimers. The interaction radius r0 was chosen as defining the radius of

a bead.

Since distances $0 and $1 = 0.5$0 in the open and closed dimer conformations

were both smaller than 2r0 = 2.15$0, large overlaps between the beads in a dimer

were present in the simulations. However, this did not affect the internal dimer

dynamics because there were no repulsive interactions between the beads in the

same dimer. Additionally, the simulated system included one passive tracer

particle of radius 0.5$0.

The volume fraction φ occupied by dimers was determined by taking into

account the overlaps, but assuming that all dimers were in the equilibrium open

state with the length of $0. Because, under substrate saturation conditions, they

were however mainly found in the closed state with an even stronger overlap,

such definition overestimated the actual volume fraction by a factor of up to

two.

Due to the crowding effects, diffusion of a passive particle in the system

of inactive dimers decreased with the volume fraction of them. The diffusion

reduction at the highest taken volume fraction φ = 0.266 was less than ten per-

cent, indicating that this colloidal system was still far from the glass transition

threshold [2.57].

When the dimers were active, diffusion of tracers was increasing instead with

the dimer volume fraction φ. For the most stiff active dimers with k0$20/(kBT ) =
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1440 and the kinetic regime with w1τ1 about 0.1, relative diffusion enhancement

of DA/DT = 0.3 could be observed [2.20] at the dimer volume fraction of φ =

0.266. For the least stiff dimers with k0$20/(kBT ) = 144, diffusion enhancement

by 5 percent was seen at φ = 0.133.

Thus, collective hydrodynamic effects of active enzymes on diffusion of pas-

sive particles could be computationally confirmed. To speed up the calculations,

model enzymes in the study [2.20] were chosen however to be unusually rapid

(with the turnover times shorter than the rotational diffusion time) and un-

usually exothermic (with the heat release of hundreds of kBT per a turnover

cycle). It would be therefore important to undertake such simulations also for

the parameters closer approaching those of the real enzymes.

2.5 Conclusion

To our knowledge, the present work is the first study where hydrodynamic

force dipoles of mechanochemical enzymes have been systematically analyzed.

Although the analysis has been performed for an idealized model, order-of-

magnitude estimates for the intensity of such dipoles for characteristic enzymes,

such as adenylate kinase, and for protein machines, such as myosin, have been

obtained.

We have also examined for what kinds of enzymes strong hydrodynamic ef-

fects may be expected. Our analysis reveals that, in the framework of the inves-

tigated model, these should be very rapid, highly exothermic and stiff enzymes,

where the energy is dissipated in mechanical motions of a small amplitude. It is

interesting to note that these general conditions are indeed satisfied, for example,

for catalase or urease.

Using the derived statistical properties of force dipoles in the dimer model,

more accurate estimates for diffusion enhancement for surrounding passive par-

ticles in solutions of active enzymes were obtained.

Based on these results, currently available experimental and computational
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data has been examined. We have concluded that, while the collective hydro-

dynamic effects of diffusion enhancement have been principally confirmed in the

computational study [2.20], further work is needed to bring simulations closer

to the parameter region corresponding to real enzymes.

On the experimental side, we have concluded that the data on diffusion en-

hancement in weak nanomole solutions of several fast exothermic enzymes can-

not be explained in the framework of the theory [2.12] and alternative explana-

tions for them should be sought. In experimental studies of diffusion phenomena

in living cells and in cellular extracts, additional work is needed to distinguish

possible hydrodynamic contributions from the effects of direct collisions between

active proteins and the resulting kinetic crowding effects. Large-scale numeri-

cal simulations of crowded active colloids including hydrodynamic interactions

between the particles are to be performed. It should be also pointed out that, al-

though the effects of diffusion enhancement are also predicted for biomembranes

crowded with active protein inclusions, experiments and numerical multiparticle

simulations of such phenomena are still missing today; it would be interesting

to carry them out.

It was not the aim of the present work to provide a review of all proposed

mechanisms for diffusion enhancement effects. Especially, we have not con-

sidered possible origins of diffusion enhancement for single catalytically active

enzymes, even though this question attracts much attention in view of the recent

research [2.45, 2.46, 2.48]. Our focus was on diffusion enhancement for passive

particles caused by hydrodynamic collective stirring of the solution by a popu-

lation of active particles that cyclically change their shapes, but do not propel

themselves.

In the future, the active dimer model can be used to develop stochastic ther-

modynamics of mechanochemical enzymes. It would be important to investigate

in detail hydrodynamic effects, accompanying functional conformational transi-

tions, in all-atom or coarse-grained molecular dynamics simulations for specific
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enzymes and protein machines.

Appendix 2.A Transition probabilities

When transitions between the states s = 0 and s = 1 are rare, the solution

of the master equations (2.7) and (2.8) can be approximately sought in the form

ps(x, t) = πs(t)p(x, t|s), (2.A1)

where πs(t) is the probability to find the dimer in the ligand state s and p(x, t|s)

is the probability distribution for distance x provided that the dimer is (perma-

nently) in the state s.

Substituting these expressions into Eqs. (2.7) and (2.8) and integrating over

the variable x, one finds that the probabilities πs obey classical master equations

for a two-level system,

dπ0
dt

= w1π1 − w0π0, (2.A2)

and

dπ1
dt

= w0π0 − w1π1. (2.A3)

Here w0 and w1 are effective rates of transitions between the states given by

w0 =

∫ ∞

−∞
dx u0(x)p(x|s = 0), (2.A4)

and

w1 =

∫ ∞

−∞
dx u1(x)p(x|s = 1). (2.A5)

The involved probability distributions in the statistically stationary case are

p(x|s = 0) =

√
k0

2πkBT
exp

[
− k0
2kBT

(x− $0)
2

]
, (2.A6)

and

p(x|s = 1) =

√
k1

2πkBT
exp

[
− k1
2kBT

(x− $1)
2

]
. (2.A7)

If the transition windows are narrow, approximations in Eq. (2.9) can fur-
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thermore be used, so that we obtain

w0 = ν0p(x = $0|s = 0), w1 = ν1p(x = $1|s = 1). (2.A8)

Thus, using the above expressions for distance distributions, we finally get

w0 = 2ρv0

√
k0

2πkBT
, (2.A9)

and

w1 = 2ρv1

√
k1

2πkBT
. (2.A10)

In the steady state, the probabilities are

π0 =
w1

w0 + w1
, π1 =

w0

w0 + w1
. (2.A11)

Appendix 2.B Average force dipole

Let us consider the second statistical moment 〈x2〉. In a steady state, its

time derivative is zero. On the other hand, by using Eqs. (2.7) and (2.8) and

integrating by parts, we find

d〈x2〉
dt

= 2γ

∫ ∞

−∞
dx

[
k0x($0 − x)p0(x) + k1x($1 − x)p1(x)

]

+ 2γkBT

∫ ∞

−∞
dx

[
p0(x) + p1(x)

]

= 2γ〈m〉+ 2γkBT = 0. (2.B1)

Thus, we straightforwardly obtain that, for an active dimer in any statistically

steady state, 〈m〉 = −kBT .

Note that here and also in the equations below, the integration limits over

x are taken as +∞ and −∞. The actual limits are automatically selected by

probability distributions p0(x) and p1(x).

Appendix 2.C Force-dipole correlation function

Introducing

p(x, t) =



 p0(x, t)

p1(x, t)



 , (2.C1)
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we can write the system of two master equations (2.7) and (2.8) concisely as

dp

dt
= −L̂p, (2.C2)

where

L̂ =



 L̂00 L̂01

L̂10 L̂11



 , (2.C3)

and

L̂00 = γk0
∂

∂x
($0 − x)− γkBT

∂2

∂x2
+ u0(x), (2.C4)

and

L̂11 = γk1
∂

∂x
($1 − x)− γkBT

∂2

∂x2
+ u1(x), (2.C5)

and

L̂01 = −u1(x), L̂10 = −u0(x). (2.C6)

The general solution of Eq. (2.C2) is

ps(x, t) =
∞∑

n=0

Anq
(n)
s (x)e−λnt + c.c. (2.C7)

where λn and q(n) are eigenvalues and eigenvectors of the linear operator L̂,

L̂q(n) = λnq
(n), (2.C8)

and decomposition coefficients An are determined by initial conditions.

Because the master equation must have a stable stationary solution, the

operator L̂ should always possess a zero eigenvalue λ0 = 0 and, furthermore,

condition Reλn > 0 should hold for all other eigenvalues n [2.61]. Generally, the

eigenvectors can be ordered according to the increase of Reλn (and therefore we

can enumerate the eigenvalues in such a way that 0 < Reλ1 ≤ Reλ2 ≤ Reλ3 ≤

...). The stationary probability distribution p̄(x) coincides with the eigenvector

q(0)(x).

The conditional probability G(x, s, t|x0, s0) gives the probability to find the

dimer in various states (x, s) at time t provided that it was in the state (x0, s0)
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at time t = 0. It represents a special solution of the master equation (2.C2)

given by

G(x, s, t|x0, s0) =
∞∑

n=0

an(x0, s0)q
(n)
s (x)e−λnt + c.c. (2.C9)

where an(x0, s0) are the coefficients of decomposition of this initial condition

over eigenvectors q(n).

The force dipole m depends on the distance x between the domains and

on the dimer state s, i.e., m(t) = m(x(t), s(t)). Therefore, in the statistically

stationary state we have

〈m(t)m(0)〉 =
∑

s,s0=0,1

∫ ∞

−∞
dx0

∫ ∞

−∞
dxm(x0, s0)m(x, s)p̄s0(x0)G(x, s, t|x0, s0).

(2.C10)

By using Eqs. (2.C9) and (2.C10), we find that, in the statistically stationary

state, the correlation function of force dipoles is

C(t) = 〈m(t)m(0)〉 − 〈m2〉 =
∞∑

n=1

Bne
−λn|t| + c.c. (2.C11)

where the complex coefficients Bn are

Bn =
∑

s,s0=0,1

∫ ∞

−∞
dx0

∫ ∞

−∞
dxm(x0, s0)m(x, s)p̄s0(x0)an(x0, s0)q

(n)
s (x). (2.C12)

If we retain in this decomposition only the first, most slowly decaying term,

this yields

C(t) ≈ B1e
−λ1|t| + c.c. =

C(0)

cosα
e−Γ|t| cos(Ω|t|− α). (2.C13)

Therefore, the normalized correlation function is

C(t)

C(0)
=

1

cosα
e−Γ|t| cos(Ω|t|− α), (2.C14)

where Γ = Reλ1, Ω = Imλ1, and B1 = C(0)eiα/ cosα.

Our numerical simulations, described in Sec. 2.2.3, have shown that, in the

regimes approaching a deterministic oscillatory dimer, the correlation functions

of force dipoles could be well fitted to the above dependence. This suggests that

contributions from the higher, more rapidly decaying relaxation modes n > 1
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have been indeed relatively small. As generally known [2.62], noisy oscillators

possess a slowly relaxing mode that corresponds to diffusion of the oscillation

phase. It can be expected that, under chosen conditions, such a mode has been

dominating the correlation functions for oscillatory dimers.

Appendix 2.D Dependence on orientational cor-

relation time

Suppose that the force-dipole correlation function C(t) and the orientational

correlation function σ(t) are given by Eqs. (2.C14) and (2.39). By taking the

integral in Eq. (2.38), we find

χ =
1/τrot + Γ+ Ω tanα

(1/τrot + Γ)2 + Ω2
〈∆m2〉. (2.D1)

This yields a nonmonotonous dependence of χ on the orientational correlation

time. If the phase shift α is small and can be neglected (cf. Fig. 2.7), the

maximum value χmax is reached at τrot = (Ω− Γ)−1 and we have

χmax

χ∞
=

Γ2 + Ω2

2ΓΩ
, (2.D2)

where

χ∞ =
Γ

Γ2 + Ω2
〈∆m2〉, (2.D3)

is the limit of χ when τrot + Γ−1 and τrot + Ω−1.

These results allow us to discuss how the diffusion enhancement would de-

pend on the orientational correlational time τrot, not assuming that it is much

shorter than the correlation time for force dipoles. If the approximation in

Eq. (2.30) holds, diffusion enhancement is determined by Eq. (2.37) where χ is

given by Eq. (2.D1). The diffusion enhancement depends nonmonotonously on

the orientational correlation time. It increases linearly with τrot at short times,

then reaches a maximum at τrot = (Ω − Γ)−1 and finally saturates at large ori-

entational correlation times. For example, if we take the values Γ ≈ 1/(2τ0) and

Ω ≈ π/(3τ0) corresponding to substrate saturation in Fig. 2.7, the maximum
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diffusion enhancement would be reached at τrot = 1.8τ0 and, at the maximum,

it will be larger by about 30 percent than in the limit τrot + τ0.

Appendix 2.E Program: Langevin equation in

Eq. (2.5)

Here we present the source code for calculating the discretized Langevin

equation of Eq. (2.5). The Euler method is used and the dynamical change of x

can be obtained by using this code.

Listing 2.1: Main program (output are not written)

1 import os

2 from os import path

3 import datetime

4 import time

5 from numpy.random import *

6 import numpy as np

7 import datetime

8 import multiprocessing

9

10

11 start = time.time()

12

13

14 class Write():

15 def __init__(self):

16 pass

17

18 def write_t_x_m_s(self):

19 f = open(’%s_%0.2 fnu0_no%d.txt’%(output0 ,nu0 ,

nthfile), ’w’)

20 get_parameters(f)

21 f.write(’#t!x!m!s\n’)

22 [f.write( str(ts[item]) +’!’+ ’%0.8f’%(xs[item]) +

’!’+ ’%0.8f’%(ms[item]) +’!’+ str(ss[item]) +’!’

+ ’\n’) for item in range(trueTT)]

23 f.close()

24

25 def write_t_submcorr(self):

26 f = open(’%s_%0.2 fnu0_no%d.txt’%(output0 ,nu0 ,

nthfile), ’r’)

27 ms = np.loadtxt(f, unpack=True , usecols =[2])

28 submcorrs = get_correlation(ms)

29 f = open(’%s_%0.2 fnu0_no%d.txt’%(output1 ,nu0 ,

nthfile), ’w’)
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30 get_parameters(f)

31 f.write(’#t!submcorr!\n’)

32 [f.write( str(ts[item]) +’!’+ "%0.8f"%( submcorrs[

item]) +’!’+ ’\n’) for item in range(trueTT)]

33 f.close()

34

35 def write_t_averagedmcorr(self):

36 for j in range(filenum):

37 f = ’%s_%0.2 fnu0_no%d.txt’%(output1 ,nu0 ,j)

38 submcorrs = np.loadtxt(f, unpack=True , usecols

=[1])

39 if j == 0:

40 sums = np.array ([0.]* ndelay)

41 sums += submcorrs [: ndelay]

42

43 averagedmcorrs = sums / filenum

44

45 f = open(’%s_%0.2 fnu0_%dfiles.txt’%(output2 ,nu0 ,

filenum), ’w’)

46 get_parameters(f)

47 f.write(’#t!averagedmcorr\n’)

48 [f.write( str(ts[item]) +’!’+ "%0.8f"%(

averagedmcorrs[item]) + ’\n’) for item in range

(ndelay)]

49 f.close()

50

51 f = open(’%s_%0.2 fnu0_%dfiles.txt’%(output3 ,nu0 ,

filenum), ’w’)

52 get_parameters(f)

53 f.write(’#t!scaledaveragedmcorr\n’)

54 [ f.write( str(ts[item]) +’!’+ "%0.8f"%(

averagedmcorrs[item]/ averagedmcorrs [0]) + ’\n’)

for item in range(ndelay)]

55 f.close()

56

57

58

59 nu0s = [40]

60

61

62 # parameters

63 theta = 0.0018

64 A = np.sqrt (2* theta) # magnitude of thermal noise

65 LC = float (0.1) # l_c/l_0

66 L1 = (LC + 1.0) / 2.0 # l_1/l_0

67 nu0 = float (0) # transition rate into s=1

68 nu1 = float (2) # transition rate into s=0

69 WDT = float (10 ** -2) # width of interval for transition

70 DT = float (10 ** -3) # time interval
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71 TT = 10 ** 6 # total steps

72 TOUT = 50 # how often it is printed out

73 trueTT = int(TT/TOUT)

74 SD = np.sqrt(DT) # standard deviation

75 delay = 100 # delay time for correlation function is taken

up to here

76 ndelay = int((delay/DT)/TOUT) # delay time step for

correlation function

77 ts = [i*TOUT*DT for i in range(trueTT)]

78 W01 = int (0)

79 W10 = int (0)

80

81

82 # positions

83 t = float (0)

84 x = float (0)

85 s = 0

86 m = float (0)

87 xs = []

88 ss = []

89 ms = []

90

91

92 staato = 0

93 filenum = 10 # number of files

94 data = [i for i in range(0,filenum)]

95 corenumber = 10

96 splitnum = int(filenum/corenumber)

97 split_data = [data[i:i+splitnum] for i in range(staato ,

filenum ,splitnum)]

98

99

100 filename = path.basename(__file__)

101 name , ext = path.splitext(filename)

102 cd = path.dirname( path.abspath(__file__))

103 today = datetime.datetime.today ()

104 newname = "%s_%s"%(name ,today)

105 folders = [ "t_x_m_s", "t_submcorr", "t_averagedmcorr", "

t_scaledaveragedmcorr"]

106 folder0 = folders [0]

107 folder1 = folders [1]

108 folder2 = folders [2]

109 folder3 = folders [3]

110 cwd = "%s/%s"%(cd,newname) # current working directory

111 os.mkdir(cwd)

112 [ os.mkdir("%s/%s"%(cwd ,folders[i])) for i in range(len(

folders))]

113 output0 = "%s/%s/t_x_m_A %0.2f"%(cwd ,folder0 ,A)

114 output1 = "%s/%s/t_submcorr_A %0.2f"%(cwd ,folder1 ,A)
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115 output2 = "%s/%s/t_avemcorr_A %0.2f"%(cwd ,folder2 ,A)

116 output3 = "%s/%s/t_scaledavemcorr_A %0.2f"%(cwd ,folder3 ,A)

117

118

119 def get_parameters(f):

120 f.write("#source!filename :%s\n"%( filename))

121 f.write(’#theta!=!%03.3f\n’%( theta))

122 f.write(’#A!=!%03.3f\n’%(A))

123 f.write(’#LC!=!%03.3f\n’%(LC))

124 f.write(’#L1!=!%03.3f\n’%(L1))

125 f.write(’#nu0!=!%03.3f\n’%(nu0))

126 f.write(’#nu1!=!%03.3f\n’%(nu1))

127 f.write(’#W01!=!%03.3f\n’%(W01))

128 f.write(’#W10!=!%03.3f\n’%(W10))

129 f.write(’#WDT!=!%03.3f\n’%(WDT))

130 f.write(’#DT!=!%03.3f\n’%(DT))

131 f.write(’#TT!=!%03.3f\n’%(TT))

132 f.write(’#TOUT!=!%03.3f\n’%(TOUT))

133

134

135 def get_difference ():

136 now = int(time.time())

137 seed(now +100* nthfile)

138 dx = - ( (x - 1) + s * (x - LC))* DT + A * SD * randn

()

139 return dx

140

141 def get_m():

142 return - x * ( (x - 1.) + s * (x - LC) )

143

144 def get_correlation(X):

145 n = len(X)

146 X = X - np.mean(X)

147 correlation = np.zeros(n)

148 for i in range(ndelay):

149 if i == 0:

150 correlation [0] = np.sum(X*X) / n

151 else:

152 correlation[i] = np.sum(X[i:]*X[:-i]) / (n-i)

153 return correlation

154

155 def worker(data):

156 [calc(x) for x in data]

157

158 def calc(X):

159 global x,m,s,xs,ms,ss,nthfile ,W01 ,W10

160 xs = []

161 ms = []

162 ss = []
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163 x = float (1.0) # initial position

164 s = int (0) # initial state

165 m = get_m()

166 xs.append(x)

167 ms.append(m)

168 ss.append(s)

169

170 W01 = nu0 * DT # transition probability from s=0 into

s=1

171 W10 = nu1 * DT # transition probability from s=1 into

s=0

172

173 nthfile = X

174

175 for i in range(1, TT+1):

176 if s == 0 and x > (1-WDT) and x < (1+ WDT) and rand

() < W01:

177 s = 1

178 elif s == 1 and x > (L1 -WDT) and x < (L1+WDT) and

rand() < W10:

179 s = 0

180 x += get_difference ()

181 m = get_m()

182 if (i%TOUT) == 0:

183 xs.append(x)

184 ms.append(m)

185 ss.append(s)

186

187 write.write_t_x_m_s ()

188

189 write.write_t_submcorr ()

190

191

192 write = Write ()

193

194

195 for nu0 in nu0s:

196 jobs = []

197 for data in split_data:

198 job = multiprocessing.Process(target=worker , args

=(data , ))

199 jobs.append(job)

200 job.start ()

201

202 [job.join() for job in jobs]

203

204 write.write_t_averagedmcorr ()
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Chapter 3

Shear Viscosity of Two-State

Enzyme Solutions †

3.1 Introduction

Molecular enzymes are nanometer-size proteins that catalyze chemical reac-

tions in the presence of substrate molecules. Here substrates are chemical species

that react with enzymes and generate product molecules. Catalytic processes

that are carried out by molecular enzymes in the cytoplasm and the membrane

are essential for cellular metabolism and homeostasis [3.1]. In the presence of a

substrate, enzymes undergo conformational changes in each turnover cycle of the

chemical reaction [3.2]. In order to mimic actual enzymes, these conformational

dynamics have been simulated using elastic network models [3.3–3.5], and the

relationship between conformational dynamics and the chemical reaction stages

has been studied recently [3.6].

One of the long-standing and interesting questions in the field is whether a

single enzyme exhibits a motile behavior [3.7]. Thanks to recent developments

of experimental techniques, diffusion phenomena in enzyme solutions have been

studied by several groups. Using fluorescence correlation spectroscopy, Muddana

†The material presented in this chapter was published in: Y. Hosaka, S. Komura, and D.
Andelman, Phys. Rev. E 101, 012610 (2020).
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et al. [3.8] reported that diffusion of a single enzyme is enhanced in presence of

a substrate. Later on, Riedel et al. [3.9] showed that the heat released during

turnovers also enhances the enzyme diffusion. Illien et al. [3.10] however, re-

vealed experimentally that not only exothermic enzymes but also endothermic

ones contribute to the diffusion enhancement. In the presence of a gradient

in substrate concentrations, enzymes exhibit collective motions in the direc-

tion of higher or lower concentrations [3.11, 3.12]. Moreover, the enhanced

diffusion of passive objects in enzymatic solutions have been observed indepen-

dently [3.13, 3.14].

To understand these experimental findings, several models have been pro-

posed using equilibrium as well as nonequilibrium approaches. Illien et al. [3.15]

modeled an enzyme consisting of hydrodynamically coupled subunits, and in-

troduced two discrete equilibrium states corresponding to a free enzyme and

a substrate-enzyme complex. They showed that diffusion of an enzyme is en-

hanced due to equilibrium fluctuations [3.15, 3.16]. Within a nonequilibrium

framework, Golestanian [3.17] proposed four possible mechanisms leading to

diffusion enhancement by enzymes. They included self-thermophoresis, boost

in kinetic energy, stochastic swimming, and collective heating. Mikhailov and

Kapral [3.18, 3.19] modeled an enzyme as an active force dipole that exerts

forces on the surrounding fluid. When such dipoles are immersed in aqueous

fluids, hydrodynamic collective effects due to force dipoles can lead to diffusion

enhancement [3.18–3.20].

In spite of these extensive studies on enzyme diffusion, a recent experimen-

tal work pointed out the difficulty of accounting quantitatively for the observed

enhanced diffusion within such models as above [3.21]. Moreover, recent experi-

ments did not observe any change in the diffusion behavior for a specific enzyme

that was previously reported to exhibit enhanced diffusion [3.22, 3.23]. It was

also noticed that the viscosity of enzyme solutions is locally reduced while a spe-

cific enzymatic reaction is taking place [3.7, 3.24]. However, the effect of enzyme
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conformational changes on the solution shear viscosity has not been considered

theoretically despite its importance.

In this paper, we present an analytical study on the shear viscosity of a dilute

enzyme solution under steady shear flow. As a coarse-grained model of catalytic

enzymes, we use the two-state dimer model in which conformational changes are

induced by substrate binding and product release [3.18]. Our two-state dimer

model consists of two hard spheres representing enzymatic domains, which are

connected by a harmonic spring [3.18, 3.25, 3.26]. Assuming that the conforma-

tional distribution is given by the Boltzmann distribution function, weighted by

the waiting time of an enzyme, we obtain analytically the shear viscosity of a

two-state dimer solution as a function of the substrate concentration. As a re-

sult of the competition between the energy difference of the enzyme two internal

states and the substrate concentration, we find that the enzyme solution viscos-

ity exhibits a nonmonotonic behavior that depends on the physical properties

of the binding substrates. We shall also connect the obtained viscosity with the

diffusion coefficient of a tracer particle in enzyme solutions.

The outline of our manuscript is the following. In Sec. 3.2, we review the

derivation of the shear viscosity of dimer solutions originally used to describe

polymer solutions. In Sec. 3.3, we discuss the shear viscosity of a two-state dimer

solution that represents enzyme solutions. We first introduce the two-state dimer

model and discuss the conformational distribution function of dimers. Analytical

results for the shear viscosity due to dimers and its limiting expressions are

presented. Finally, some discussions and a summary are given in Sec. 3.4.

3.2 Viscosity of dimer solutions

3.2.1 Shear viscosity

We consider a dilute solution of dimers under steady shear flow as schemat-

ically depicted in Fig. 3.1. Here the solvent viscosity is ηs and each dimer is

composed of two rigid spheres of radius a, which are connected by an elastic
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Figure 3.1: A dilute solution of two-state dimers under steady shear flow with
shear rate γ̇. Dimers consist of two green spheres of radius a connected with
an elastic spring, and immersed in a Newtonian fluid having viscosity ηs. The
enzymatic reaction, in which a dimer, a substrate (red circle) and a product
(blue circle) participated, is explained in Fig. 3.2.

spring. The positions of two spheres are denoted by the three-dimensional vec-

tors r1 and r2. Then, the force acting between the two spheres within the dimer

is given by

fα = −∂U(r)

∂rα
, (3.1)

where U(r) is the elastic potential energy, r = |r| = |r2 − r1| is the distance

between the two spheres, and rα is the α-component of the vector r = (rx, ry, rz).

In the presence of potential forces, the equation of motion of an overdamped

dimer can be written as [3.27, 3.28]

∂rα
∂t

=
2

ζ
fα − 2kBT

ζ

∂ lnψ

∂rα
+ dαβrβ, (3.2)

where ζ is the friction coefficient of the sphere, kB is Boltzmann constant, T is

the temperature, ψ(r, t) is the time-dependent configurational distribution of a

dimer, and the velocity gradient tensor is given by

dαβ =
∂vα
∂rβ

. (3.3)

Notice that vα is the α-component of the velocity v = (vx, vy, vz). Throughout
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this work, we assume summation over repeated indices. The second and third

terms on the right-hand side of Eq. (5.13) represent the velocity due to thermal

motion of the solvent and that imposed by the flow field, respectively.

Such models of dimers have been used extensively to model polymer solu-

tions. For polymer solutions, the stress tensor due to the presence of dimers is

given [3.27, 3.28]

σαβ = n〈rαfβ〉, (3.4)

where n is the number density (per unit volume) of dimers, and 〈· · · 〉 denotes

the thermal average over all dimer configurations. To calculate the statistical

average in Eq. (6.3), we introduce the following Fokker-Planck equation for the

conformational distribution ψ(r, t)

∂ψ

∂t
= − ∂

∂rα

(
2

ζ
fαψ − 2kBT

ζ

∂ψ

∂rα
+ dαβrβψ

)
. (3.5)

In the above, the continuity equation

∂ψ

∂t
= −∇ ·

(
∂r

∂t
ψ

)
, (3.6)

where ∇ = (∂rx, ∂ry, ∂rz) and Eq. (5.13) have been used. From the time evo-

lution of 〈rαrβ〉 in a steady state, the stress tensor in Eq. (6.3) can be written

as [3.27, 3.28]

σαβ = nkBT δαβ +
nζ

4

[
dαγ〈rβrγ〉+ dβγ〈rαrγ〉

]
. (3.7)

For simple shear flow whose velocity components are given by vx = γ̇ry,

vy = vz = 0, where γ̇ is the shear rate (see Fig. 3.1), the viscosity due to dimers

has a simple form

η =
σxy
γ̇

=
nζ

4
〈r2y〉. (3.8)

In order to calculate the average 〈r2y〉, we need to specify the conformational

distribution function ψ(r).
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3.2.2 Fraenkel dimer model

Let us first discuss a dimer consisting of two spheres that are connected by

a harmonic spring having an elastic constant K0, and a natural length $0. Its

potential energy is then given by

U0(r) =
K0

2
(r − $0)

2. (3.9)

This is the “Fraenkel dimer model” [3.29], and is different than other polymer

dynamic models, such as the Hookean dimer model. For Fraenkel dimers, the

conformational distribution function, ψ0, is given by

ψ0(r) = C exp

[
− K0

2kBT
(r − $0)

2

]
, (3.10)

where C is the normalization constant. Here, we assume that the characteris-

tic relaxation time of a dimer is much smaller than that of a shear flow, i.e.,

ζ$20/(kBT )γ̇ ) 1. The physical meaning of this condition will be separately

explained in Sec. 3.4.

Although the shear viscosity of the Fraenkel dimer model was discussed

in Ref. [3.30], its explicit expression was not derived. By calculating 〈r2y〉 in

Eq. (3.8) using Eq. (3.10), we obtain the shear viscosity for a Fraenkel dimer

solution η0 as

η0(ε)

Gτ
=

2ε

3

2ε(5 + 2ε)e−ε +
√
πε(3 + 12ε+ 4ε2) [1 + erf(

√
ε)]

4ε2e−ε + 2
√
πε(ε+ 2ε2) [1 + erf(

√
ε)]

, (3.11)

where ε = K0$20/(2kBT ) is the dimensionless elastic energy, G = nkBT is

the relaxation modulus, τ = ζ/(4K0) is the relaxation time, and erf(x) =

(2/
√
π)

∫ x

0 dt e−t2 is the error function [3.31]. Notice that Gτ corresponds to

the viscosity of a dimer solution when the natural length of the spring vanishes,

i.e., ε = 0 [3.28, 3.30].

The limiting behaviors of η0 for the Hookean, ε ) 1, and stiff Fraenkel
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dimers, ε+ 1, are given by [3.27, 3.30]

η0(ε)

Gτ
=






1 +
4

3

√
ε

π
ε) 1,

2

3
ε ε+ 1.

(3.12)

For ε ) 1, the viscosity is almost constant, indicating that thermal energy

dominates over elastic energy. For ε + 1, on the other hand, the viscosity

increases linearly with ε.
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Figure 3.2: (a) The enzymatic cycle of two-state dimer model. A substrate (red

circle) binds to a free enzyme (s = 0) with the reaction rate k1 (A→B), while its

dissociation also occurs with the reaction rate k−1 (B→A). Once the substrate-

enzyme complex (s = 1) is formed, it starts to contract until the equilibrium

conformation is attained (B→C). Then, the product (blue circle) is irreversibly

released with the reaction rate kcat, and the bare enzyme comes back to its initial

conformation. (b) The schematic illustration of the energy for a two-state dimer

as described by Eq. (3.13). There are two energy branches U(r, 0) and U(r, 1).

The transition between them takes place at r = $0 and r = $∗, which are the

equilibrium values of U(r, 0) and U(r, 1), respectively, as are indicated by black

circles. This transition is followed by the downhill relaxational motion along

each branch. The forward and reverse transition rates, (s = 0) ! (s = 1), are

given by k1,k−1, respectively, and (s = 1) → (s = 0) is given by kcat.
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3.3 Two-state dimer solutions

3.3.1 Two-state dimer model

Catalytic enzymes undergo conformational changes in presence of substrate

molecules. To model such situations, we use a previously proposed two-state

dimer model with a state parameter that can get two values, s = 0 or 1 [3.18,

3.25, 3.26]. In Fig 3.2(a), we schematically illustrate an enzymatic cycle that is

driven by binding a substrate to an enzyme. In the s = 0 state, i.e., the state

of the dimer with the elastic constant K0 and the natural length of the spring

$0, this model corresponds to the Fraenkel dimer model.

When a substrate is supplied to a dimer enzyme whose size is r = $0, a

transition from s = 0 to s = 1 occurs with the reaction rate k1. At the same

time, the reverse reaction, namely, the substrate dissociation process, can occur

also when r = $0 with the reaction rate k−1. For the state s = 1, the substrate

adds another intra-dimer interaction, which is modeled as an additional spring,

whose elastic constant and natural length are K1 and $1, respectively. Then, the

dimer relaxes to a new equilibrium conformation having the size r = $∗, as will

be explicitly given after Eq. (3.13). Once the substrate molecule is irreversibly

converted to a product molecule with the reaction rate kcat, a transition from

s = 1 to s = 0 takes place at r = $∗. Finally, the product is released from the

enzyme.

Notice that the reaction rates, k1, k−1 and kcat are the bare rate constants

that do not depend on the energy difference between any two states. This also

holds for the reaction rates in the cascade reactions discussed in Appendix 3.A.

Moreover, the transition of a dimer occurs only when r = $0 or r = $∗; hence,

the reaction rates k1, k−1 and kcat are simply taken to be constant in our model.

The state-dependent total potential energy of this two-state dimer can be

written as

U(r, s) =
K0

2
(r − $0)

2 +
sK1

2
(r − $1)

2, (3.13)
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which gives the equilibrium length for s = 1 as $∗ = (K0$0+K1$1)/(K0+K1). In

Fig. 3.2(b), we schematically illustrate the energy of a two-state dimer given by

Eq. (3.13) when $0 > $1. Under this condition, the substrate-enzyme complex

shrinks as compared to the bare enzyme [3.18, 3.25, 3.26]. In this work, however,

we do not require such a condition. In physiological conditions, the sizes of actual

substrate-enzyme complexes either decrease ($0 > $1) or increase ($1 > $0) upon

substrate binding [3.7]. Hereafter, the subscripts “0” and “1” denote physical

values for the enzyme and the substrate-enzyme complex, respectively.

As represented by the second term in the r.h.s. of Eq. (5.13), a dimer in our

model undergoes conformational fluctuations due to thermal energy. In other

words, a free enzyme (or a substrate-enzyme complex) fluctuates around r = $0

(or r = $∗) during turnover cycles. This corresponds to the situation in which

enzymes are subject to thermal motion of solvent molecules. Notice, however,

that conformational fluctuations between multi-state enzymes [3.32, 3.33] are

not considered. This is because the original dimer model [3.18, 3.25, 3.26] that

we employ follows the simple Michaelis-Menten kinetics [see Eq. (3.14)] with the

advantage that the problem becomes tractable.

3.3.2 Conformational distribution function

The above two-state dimer model describes a chemical equation following

the standard Michaelis-Menten reaction [3.34]:

E + S
k1
!
k−1

ES
kcat−−→ E∗ + P. (3.14)

This chemical reaction equation describes the enzymatic cycle composed of three

states of an enzyme: a free enzyme (E), a substrate-enzyme complex (ES), and a

free enzyme after the reaction (E∗), as depicted in Fig. 3.2. Furthermore, S and

P stand for the substrate and product, respectively. When dimers are connected

by elastic springs, the time spent during the transition between these chemical

states can be characterized by a relaxation time τ = ζ/(4K0) as introduced after

Eq. (3.11).
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For a two-state dimer, we assume that the characteristic relaxation time is

much smaller than that of a shear flow, i.e., ζ$20/(kBT )γ̇ ) 1 as adopted for the

Fraenkel dimer model in Sec. 3.2. We further assume that the transition time

spent between enzymatic states is much smaller than the waiting time in each

of the states, s = 0, 1, i.e., τ/Ws ) 1, where the waiting time Ws will be defined

later in Eq. (3.16). This assumption is justified for enzymes such as adenylate

kinase having a relatively large waiting time, τ/W1 ≈ 0.1 [3.6]. For complete-

ness, however, the general case of arbitrary waiting times is discussed in Sec. 3.4.

Under these conditions, we can introduce the Boltzmann distribution function

that is weighted only by the waiting time in the respective enzymatic states.

The validity of this assumption has been confirmed by numerical solutions of

the Langevin equation for a single two-state dimer [3.26].

The distribution function for the two-state dimer model for an enzyme is

then given by

ψe(r) =
W0e−βU(r,0) +W1e−βU(r,1)

∫
dr [W0e−βU(r,0) +W1e−βU(r,1)]

, (3.15)

where β = 1/(kBT ). Here the waiting time in the state s is defined by [3.35, 3.36]

Ws =

∫ ∞

0

dt ps(t), (3.16)

where ps(t) is the time-dependent probability distribution function of an enzyme

in state s, which will be explicitly given in Eq. (3.18). The case of a cascade

reaction containing N substrate-enzyme complexes is discussed in Appendix 3.A

as a generalization, and Eq. (3.15), hence, corresponds to the case N = 1.

3.3.3 Waiting times

Since we consider a dilute solution of two-state dimers, we employ a single

enzyme kinetics to obtain the waiting time that an enzyme spends at each

catalytic step (see also Appendix 3.B). The validity of using a single enzyme

kinetics for an enzyme solution will be discussed later in this subsection. For

two-state dimers, the corresponding kinetic equations are written in terms of
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the probability functions as [3.32, 3.33, 3.37, 3.38]

dp0
dt

= k−1p1 − k′
1p0,

dp1
dt

= k′
1p0 − (k−1 + kcat)p1,

dp∗
dt

= kcatp1.

(3.17)

Here, p0(t), p1(t) and p∗(t) are the probability distribution functions for the

two-state dimer in one of the two states, s = 0, 1, and the free enzyme after

the catalysis (E∗), respectively. In the above, we have introduced the pseudo

first-order rate constant k′
1 = k1cS, where cS is the time-independent substrate

concentration. Such an assumption is justified when cE ) cS is satisfied, where

cE is the enzyme concentration.

By solving the above coupled kinetic equations using the initial conditions,

p0(0) = 1 and p1(0) = p∗(0) = 0, under the normalization condition p0(t) +

p1(t)+p∗(t) = 1, the time-dependent probability distributions are obtained [3.37]

p0(t) =
1

2a

[
(a+ b− k′

1) e
(a−b)t + (a− b+ k′

1) e
−(a+b)t

]
,

p1(t) =
k′
1

2a

[
e(a−b)t − e−(a+b)t

]
,

p∗(t) =
k′
1kcat
2a

[
1

a− b
e(a−b)t +

1

a+ b
e−(a+b)t

]
+ 1,

(3.18)

where

a =
[
(k′

1 + k−1 + kcat)
2/4− k′

1kcat
]1/2

,

b = (k′
1 + k−1 + kcat)/2.

(3.19)

Because a − b < 0 and a + b > 0, both p0(t) and p1(t) decay exponentially for

t → ∞, and consequently p∗ → 1.

Substituting p0(t) and p1(t) of Eq. (3.18) into Eq. (3.16), we obtain the

waiting times for s = 0 and 1 as

W0 =
k−1 + kcat
k′
1kcat

, W1 =
1

kcat
. (3.20)

As a result, the distribution function in Eq. (3.15) can be written as

ψe(r) =
e−βU(r,0) + νe−βU(r,1)

∫
dr [e−βU(r,0) + ν e−βU(r,1)]

, (3.21)
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where we have introduced the dimensionless parameter ν

ν =
k1

k−1 + kcat
cS =

cS
KM

, (3.22)

and KM is the Michaelis constant [3.1]

KM =
k−1 + kcat

k1
. (3.23)

Physically, ν represents the fraction of the s = 1 state during one turnover cycle

of the enzymatic reaction. It depends only on the substrate concentration and

the bare rate constants. In the following analyses, we vary this state parameter ν

to investigate the shear viscosity of enzyme solutions. Some numerical estimates

of ν are given in the end of this section.

We discuss here the validity of using a single-enzyme kinetics. In our model,

we have assumed that the concentration of enzymes is small enough so that

hydrodynamic interactions between enzymes are negligible [3.28]. Such a dilute

condition corresponds to having only a single enzyme in the system, leading to

a renewal process [3.37]. In the renewal process, the probability distribution

function is identically and independently distributed [3.39]. This means that in

every turnover cycle, waiting times follow the same probability distribution, and

hence these times can be uniquely determine as shown in Eq. (3.20).

For systems containing mesoscopic numbers of enzymes, however, stochastic-

ity in enzymatic reactions plays more important roles as discussed in Refs. [3.39,

3.40]. Enzyme stochasticity leads to nonrenewal processes and causes breakdown

of the Michaelis-Menten equation in steady state [3.39, 3.40]. Since the waiting

time distributions depends on the number of enzymes for nonrenewal processes,

one needs to derive master equations for waiting time distributions when a so-

lution of multiple enzymes is considered [3.39]. This is beyond the scope of the

present work.

3.3.4 Viscosity of two-state dimer solutions

To calculate the shear viscosity of a two-state enzyme solution, we introduce

the following notations: κ = K1/K0, λ = $1/$0, and λ∗ = $∗/$0 = (1 + κλ)/(1 +
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κ), where $∗ = (K0$0 + K1$1)/(K0 + K1) is the effective natural length for a

dimer in the s = 1 state. In Appendix 3.C, we show that the viscosity of a

two-state enzyme solution is given by

ηe(ν, ε,κ,λ) = η0 + (η1 − η0)
zν

1 + zν
, (3.24)

where the quantity η1 (η0) corresponds to the viscosity when all the enzymes

are in the s = 1 (s = 0) state

η1(ε,κ,λ)

Gτ
=

2ε

3

g4 (ε(1 + κ),λ∗)

g2 (ε(1 + κ),λ∗)
, (3.25)

and

z(ε,κ,λ) = exp

[
− εκ

1 + κ
(λ− 1)2

]
g2 (ε(1 + κ),λ∗)

g2(ε, 1)
. (3.26)

See also Eq. (3.11) for the Fraenkel dimer viscosity η0(ε). In the above, gm(p, q)

is given by an integral

gm(p, q) =

∫ ∞

0

dr rme−p(r−q)2 , (3.27)

and its explicit expression is obtained in Appendix 3.C [see Eq. (3.C6)]. Specif-

ically, the functions g2(p, q) (m = 2) and g4(p, q) (m = 4) are given by

g2(p, q) =
q

2p
e−pq2 +

√
π(1 + 2pq2)[1 + erf(

√
pq)]

4p3/2
, (3.28)

Figure 3.3: Contour plot of ηe/(Gτ) as a function of the parameters ν = cS/KM

[see Eq. (3.22)] and κ = K1/K0 for ε = K0$20/(2kBT ) = 1 and λ = $1/$0 = 1.
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Figure 3.4: Contour plot of ηe/(Gτ) as a function of the parameters ν = cS/KM

[see Eq. (3.22)] and λ = $1/$0 for ε = K0$20/(2kBT ) = 1 and κ = K1/K0 = 1.
The white region corresponds to larger absolute values of ηe.

and

g4(p, q) =
q(5 + 2pq2)

4p2
e−pq2 +

√
π(3 + 12pq2 + 4p2q4)[1 + erf(

√
pq)]

8p5/2
, (3.29)

respectively. Equations (3.24)–(3.29) for the viscosity are the main result of this

work.

In Eq. (3.26), the factor εκ/(1 + κ)(λ− 1)2 in the exponential function cor-

responds to the dimensionless energy difference, U($∗, 1) − U($0, 0), between

the two equilibrium states of a two-state dimer with $0 and $∗, as shown in

Fig. 3.2(b). Although only the bare reaction rates are taken into account, the

above energy difference naturally emerges by defining the weighted distribution

function as in Eq. (3.21).

When ν = 0, ηe of Eq. (3.24) simply reduces to η0, the viscosity of the

Fraenkel dimer solution [s = 0, see Eq. (3.11)]. For ν (= 0, the enzyme solution

viscosity ηe is determined by the ratio between the two viscosities η0 and η1.

Due to the factor z, however, ηe also depends on the energy difference between

the two states of the enzyme. This effect causes a nonmonotonic behavior of the

viscosity as we will show later.

Before proceeding to analyze the behavior of ηe, we estimate typical values of
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Figure 3.5: Plot of ηe/(Gτ) as a function of the parameter ν for κ = K1/K0 =
0.1, 1 and 10. The other parameter values are ε = K0$20/(2kBT ) = 1 and λ =
$1/$0 = 1. The black dashed line represents η0 in Eq. (3.11). The red dotted
lines represent the two limiting expressions in Eq. (3.30) for κ = 1.

ε = K0$20/(2kBT ). The enzymes size can be taken as $0 ≈ 10 nm [3.1]. Moreover,

considering typical forces, 1 pN, generated by a two-state dimer with size $0, we

estimate the spring constant as K0 ≈ 10−4N/m [3.18]. Using these values and

kBT ≈ 4 × 10−21 J in physiological conditions, we obtain ε ≈ 1. Hence, we fix

the ε value hereafter to ε = 1.

In Fig. 3.3, we present the contour plot of the rescaled viscosity due to two-

state dimers, ηe/(Gτ), as a function of ν and κ for ε = λ = 1. One can see that

ηe becomes smaller for large ν and κ, implying that the viscosity decreases when

enzymatic reactions occur more frequently and substrates are stiffer (large K1).

Notice that stiff dimers lead to a decrease of ηe because its stiffness suppresses

the enzyme size fluctuation. In Fig. 3.4, we plot the rescaled viscosity, ηe/(Gτ),

as a function of ν and λ for ε = κ = 1. Here we see a nonmonotonic behavior of

the viscosity in λ characterized by a peak around λ ≈ 3.2. Note that for larger

λ values, ηe becomes independent of ν.

To see more detailed behavior, we plot in Fig. 3.5 the rescaled viscosity,

ηe/(Gτ), as a function of ν for κ = 0.1, 1 and 10, while keeping ε = λ = 1. The

dashed line corresponds to the constant viscosity for a Fraenkel dimer solution,
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Figure 3.6: Plot of ηe/(Gτ) as a function of the parameter ν for λ = $1/$0 =
0.1, 1, 4 and 5.3. The other parameter values are ε = K0$20/(2kBT ) = 1 and
κ = K1/K0 = 1. The black dashed line represents η0 in Eq. (3.11). The blue
dotted lines represent the two limiting expressions in Eq. (3.30) for λ = 4.

i.e., η0/(Gτ) ≈ 2.13. We see that ηe decreases with increasing ν for all the κ

values. The decrease of ηe is more enhanced for larger κ values.

In Fig. 3.6, we plot ηe as a function of ν for λ = 0.1, 1, 4 and 5.3, while

keeping ε = κ = 1. We see that ηe shows both increasing and decreasing

dependency as a function of ν depending on the value of λ. When λ = 0.1, 1,

and 4, the viscosity ηe increases with λ, reflecting the fact that larger enzymes

lead to higher viscosity. For larger λ such as λ = 5.3, however, ηe becomes

smaller, and as λ is further increased, the viscosity approaches the value of η0

as indicated by the dashed line. In this limit, both Fraenkel dimer solutions and

two-state enzyme solutions exhibit the same viscosity even when ν is very large.

We discuss now the nonmonotonic behavior of ηe that is seen in Fig. 3.6. Such

a behavior occurs because z in Eq. (3.26) increases for smaller λ, but strongly

decreases for larger λ due to the Gaussian function of Eq. (3.26). The factor

εκ(λ− 1)2/(1 + κ) in the Gaussian function corresponds to the rescaled energy

difference between the s = 0 and s = 1 states. Hence, it can be regarded as an

Arrhenius’ equation that determines the transition rate from the s = 0 to s = 1

state.
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Figure 3.7: Contour plot of C1/(Gτ) [see Eq. (3.30)] as a function of κ = K1/K0

and λ = $1/$0 for ε = K0$20/(2kBT ) = 1 under the condition ν ) 1. The
quantity C1 changes its sign from negative to positive around λ ≈ 2.

3.3.5 Limiting expressions

Next, we present the limiting expressions of ηe for small and large values of

the ν parameter, ν ) 1 and ν + 1. The viscosity of two-state dimer solution

in Eq. (3.24) becomes

ηe(ν, ε,κ,λ) ≈






η0 + C1ν, ν ) 1

η1 +
C2

ν
, ν + 1

(3.30)

where C1(ε,κ,λ) = (η1−η0)z and C2(ε,κ,λ) = (η0−η1)/z. In Figs. 3.5 and 3.6,

we have plotted the above limits by the red (for κ = 1) and blue (for λ = 4)

dotted line, respectively.

In Fig. 3.7, we study the ν ) 1 behavior and plot the coefficient C1 =

(η1 − η0)z of ν in Eq. (3.30) as a function of κ and λ for ε = 1. The behavior of

C1 is nonmonotonic, having a minimum and a maximum around (κ,λ) ≈ (1, 1)

and (κ,λ) ≈ (1, 2.5), respectively. The quantity C1 vanishes for large λ values,

because the Gaussian function in z, Eq. (3.26), dominates over the viscosity

difference, η0 − η1. Notice that C1 changes its sign from negative to positive

around λ ≈ 2, where the switching from decreasing to increasing behavior of ηe
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Figure 3.8: Contour plot of C2/(Gτ) [see Eq. (3.30)] as a function of κ = K1/K0

and λ = $1/$0 for ε = K0$20/(2kBT ) = 1 under the condition ν + 1. The
quantity C2 changes its sign from positive to negative around λ ≈ 2. The white
region corresponds to larger absolute values of C2.

as a function of ν occurs.

In Fig. 3.8, we study the ν + 1 behavior and plot the coefficient C2 =

(η0 − η1)/z of ν−1 in Eq. (3.30) as a function of κ and λ when ε = 1. Here C2

exhibits a monotonic behavior in κ and λ, and changes its sign from positive

to negative around λ ≈ 2. Since ηe is inversely proportional to ν in Eq. (3.30),

positive C2 leads to a decreasing behavior of ηe, whereas negative C2 results in

an increasing behavior.

3.3.6 Numerical estimates

To end this section, we give some numerical estimates of the parameter

ν = cS/KM in Eq. (3.22). The experimentally accessible substrate concentration

is 10−6 M < cS < 10−3M [3.12, 3.14]. On the other hand, the value of the

Michaelis constant KM differs between fast and slow enzymes. For fast enzymes,

such as urease and catalase, it is given by KM ≈ 10−3M [3.9, 3.12]. For slow

enzymes, such as aldolase and adenylate kinase, it is KM ≈ 10−6M [3.6, 3.10].

Hence, the ν range is estimated as 10−3 < ν < 1 and 1 < ν < 103, respectively,

for fast and slow enzymes. These estimates imply that the limiting expressions
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derived for ν ) 1 and ν + 1 in Eq. (3.30) correspond to these two types of

enzymes for cS < 10−4M and cS > 10−5M, respectively.

Next we discuss the values of κ and λ in order to estimate the viscosity ηe

for typical physiological conditions. Since an enzyme consists of a large complex

of macromolecules, the size of substrate molecules is typically smaller than that

of enzymes [3.1]. Due to this size difference, the condition λ < 1 holds gen-

erally. Noncovalent bonds, such as hydrogen bonds, van der Waals attractions

and hydrophobic forces, are responsible for the formation of macromolecular

assemblies. On the other hand, covalent bonds are responsible for the forma-

tion of substrate molecules. Then, the molecular flexibilities for the substrates

compared with the enzymes are different, which leads to the condition κ > 1.

From the above argument, we choose λ = 0.1 and κ = 10. Using these values

and setting ε = 1, we obtain ηe/(Gτ) ≈ 2.11 and ηe/(Gτ) ≈ 0.39 for fast and

slow enzymes, respectively, assuming that the maximum substrate concentration

cS = 10−3M is attained. Since η0/(Gτ) ≈ 2.13 for ε = 1, the difference between

the enzyme solution with substrates ηe and that without substates η0 is negligible

for fast enzymes, whereas the viscosity ηe is approximately five times smaller

than η0 for slow enzymes.

3.4 Discussion and conclusion

In this paper, we have investigated the viscosity of dilute two-state enzyme

solutions under steady shear flow. We have obtained the shear viscosity by tak-

ing into account the enzyme conformational changes in a solution with a supply

of substrates. The waiting times, which correspond to the respective conforma-

tions of the enzyme, are connected to the reaction rates in the enzymatic cycle

by using the single enzyme kinetics [3.37]. In our approach, the two-state dimer

model [3.18, 3.25, 3.26] and the polymer dimer model [3.27–3.29] are combined.

When the enzyme has the same structural properties as the substrate, the

shear viscosity decreases as the substrate concentration becomes higher (see
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Fig. 3.5). For a substrate larger than the enzyme, the viscosity increases with

substrate concentrations (see Fig. 3.6). When the substrate is large enough,

however, the viscosity reduces to that of a Fraenkel dimer solution. Further-

more, we have obtained the limiting expressions of the viscosity for fast and

slow enzymes [see Eq. (3.30)]. For slow enzymes, the coefficient shows only a

monotonic behavior. For fast enzymes, on the other hand, the coefficient of the

substrate concentration exhibits a nonmonotonic behavior as functions of the

stiffness and size of the substrate.

Next, we comment on the connection between the viscosity of a two-state

dimer solution and the diffusion coefficient of a tracer particle in such a solution.

By following the discussion in Refs. [3.41, 3.42], the diffusion coefficient of a

passive spherical particle of radius R can be given by Einstein’s relation

De =
kBT

6π(ηs + ηe)R
, (3.31)

where we have assumed R + $0. In terms of the enzyme volume fraction φ =

4π($0/2)3n/3, De can be expanded up to first order in φ as

De ≈
kBT

6πηsR

(
1− 9aηe

2$0Gτ
φ

)
. (3.32)

Hence, the relative change of the diffusion coefficient with respect to that of a

Fraenkel dimer solution (denoted by D0) is

δD = De −D0 =
3kBT

4πηsR

a(η0 − ηe)

$0Gτ
φ. (3.33)

Since η0 > ηe holds for both fast and slow enzymes as estimated before,

catalytic enzymes give rise to the diffusion enhancement under physiological

conditions. Moreover, we see that δD increases as cS is increased in the limits

of fast and slow enzymes (see Figs. 3.7 and 3.8). This behavior qualitatively

agrees with experiments for both tracers and enzymes [3.8, 3.14, 3.21]. More

specifically, using values such as cS = 10−3M, a/$0 = 0.2, φ = 0.1, we obtain

that the diffusion increases for slow enzymes as δD/D0 ≈ 0.15. In existing

experiments, however, φ is typically of the order of 10−5, and hence experimental
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measurements using higher cE concentration are needed for a more accurately

checking of the validity of our model.

Here we discuss how the obtained viscosity is modified by hydrodynamic

effects that have been neglected so far. In the presence of hydrodynamic inter-

actions, the equation of motion, Eq. (5.13), can be rewritten as [3.43]

∂rα
∂t

= (δαβ − ζGαβ)

(
2

ζ
fβ −

2kBT

ζ

∂ lnψ

∂rβ

)
+ dαβrβ, (3.34)

whereGαβ(r) = (δαβ + rαrβ/r2) /(8πηsr) is the hydrodynamic Oseen tensor [3.44].

If we assume all orientations to be equally probable, an equilibrium-averaged hy-

drodynamic interaction can be defined by taking the average of Gαβ(r) over all

orientations [3.45]

h =
1

3
Tr

(∫
drψ(r)Gαβ(r)∫

drψ(r)

)
, (3.35)

where Tr denotes the trace operation. This is called the pre-averaging approxi-

mation [3.44]. Then, the equation of motion can be approximated as

∂rα
∂t

≈ 2(1− ζh)

ζ

(
fα − kBT

∂ lnψ

∂rα

)
+ dαβrβ. (3.36)

Comparing Eqs. (5.13) and (3.36), one finds that the change over from neg-

ligible hydrodynamic interactions to equilibrium-averaged ones can be accom-

plished by replacing ζ with ζ/(1 − ζh). Hence, for a single-state dimer as in

Eq. (3.8), the hydrodynamic interaction modifies the viscosity by a factor of

1/(1− ζh). In Appendix 3.D, we derive h for the Fraenkel dimer model. When

a/$0 = 0.2 and ε = 1, for example, we find that the viscosity is about 20% larger

as compared to the negligible hydrodynamic case. For the two-state dimers,

hydrodynamic effects do not affect the ν-dependence of ηe although some geo-

metrical factors such as κ and λ can enter in h.

In this study, we have assumed that the distribution functions do not depend

on shear flow [see Eqs. (3.10) and (3.15)]. Here we discuss how these distribu-

tion functions are modified by an external flow and the regime where the flow

does not affect the distributions as assumed in this paper. For a steady-state
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homogeneous potential flow, Eq. (3.5) has an analytical solution [3.27]

ψ(r) = C ′ exp

[
−U(r)

kBT

]
exp

[
ζ

kBT
rαdαβrβ

]
, (3.37)

where C ′ is the normalization constant.

For a simple shear flow characterized by a shear rate γ̇, the distribution

function becomes

ψ(r, θ,φ, γ̇) = C ′ exp

[
−U(r)

kBT

]
exp

[
ζr2γ̇

2kBT
sin2 θ sin 2φ

]
, (3.38)

where rx = r sin θ cosφ and ry = r sin θ sinφ. When the length of a dimer is

r = $0, the characteristic relaxation time is given by ζ$20/(kBT ) [3.29]. Hence,

the shear flow does not affect the distribution functions when ζ$20/(kBT )γ̇ ) 1.

We have assumed that the transition time spent from one enzymatic species

to another is much smaller than the waiting time, i.e., τ/Ws ) 1. Here, we

consider the general case of arbitrary waiting time. Because the total times in

state s = 0 and s = 1 are given by W0+τ and W1+τ1, respectively, the modified

parameter ν becomes

ν =
k1(1 + kcatτ1)cS

k−1 + kcat(1 + k1τcS)
, (3.39)

where τ = ζ/(4K0) as before and τ1 = ζ/(4K1). Since the reverse reaction

rate k−1 is negligible in general but may have a finite value, we set it to be a

constant. There are only four relevant time scales, namely, k−1
cat, (k1cS)

−1, τ , and

τ1, and Eq. (3.39) has four limiting expressions. When the transition rates are

vanishingly small, the modified parameter coincides with ν in Eq. (3.22) as it

should. For the two intermediate regimes, Eq. (3.39) shows linear and inverse

dependences on the transition time. When the transition time is infinitely large,

we have ν ∼ κ−1, indicating that the transition dynamics is governed only by

the relative stiffness between the enzyme and substrate.

The transition rates can depend on κ and/or λ for general enzymatic solu-

tions although these effects were not considered in this work. Using Kramers’

reaction-rate theory [3.46], Aviram et al. [3.6] obtained free-energy profiles of
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enzymes by experimentally measuring the transition rates. In the presence of

such an effect, the enzyme solution viscosity may exhibit more complicated de-

pendences on κ and/or λ. Finally, we have assumed that the viscosity due to

enzymes does not depend on the shear rate. Since the dimer model with finite

natural lengths predicts a viscosity that depends on the shear rate [3.27, 3.30],

one can extend the present model to a nonNewtonian enzymatic fluid.

Appendix 3.A Probability distribution function

for multiple-state enzymes

In this Appendix, we generalize the dimer-enzyme into a N -mer one. We

derive the probability distribution function for a single enzyme that has multiple

intermediate states in catalytic chemical reactions. We consider the following

cascade reaction containing N intermediate substrate-enzyme complexes:

E + S
k1
!
k−1

(ES)1
k2
!
k−2

· · · (ES)s · · ·
kN
!
k−N

(ES)N
kcat−−→ E∗ + P. (3.A1)

Here (ES)s denotes the s-th intermediate complex in the reaction, and ks and k−s

are the forward and backward reaction rates to the states s and s−1, respectively.

At the final step, the complex is irreversibly converted to an enzyme and a

product with the reaction rate kcat. The enzyme after the catalysis is denoted

by E∗.

Since we assume that a substrate having the energy Es binds to (ES)s−1 with

the reaction rate ks, the energy of an enzyme in the state s can be written as

U(r, s) = E0 +
s∑

s′=1

Es′ , (3.A2)

where E0 is the energy of the free enzyme. Then, the waiting time-weighted

distribution functions is given by

ψN(r) =

∑N
s=0 Wse−βU(r,s)

∑N
s=0 Ws

∫
dr e−βU(r,s)

. (3.A3)

Here Ws is the waiting time in the state s, which is defined in Eq. (3.16).

In order to obtain the viscosity of dimer solutions using Eq. (3.8), we need
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to calculate the second moment 〈r2y〉. In general, the average of any function

f(r) over the distribution function, Eq. (3.A3), can be written as

〈f(r)〉N = 〈f(r)〉0 +
N∑

s=1

[〈f(r)〉s − 〈f(r)〉0]
zs0ws0

1 +
∑N

s′=1 zs′0ws′0

, (3.A4)

where 〈f(r)〉s denotes the average of f(r) over all configurations in the state s

〈f(r)〉s =
∫
dr f(r)e−βU(r,s)

∫
dr e−βU(r,s)

, (3.A5)

while zss′ and wss′ are defined by

zss′ =

∫
dr e−βU(r,s)

∫
dr e−βU(r,s′)

, wss′ =

∫∞
0 dt ps(t)∫∞
0 dt ps′(t)

. (3.A6)

Notice that the quantity z in Eq. (3.26) corresponds to z10 in the above notation.

Appendix 3.B Michaelis-Menten kinetics and sin-

gle enzyme kinetics

In this Appendix, we briefly review the Michaelis-Menten kinetics [3.34] and

the single-enzyme kinetics. In the two-state dimer model, the cascade reaction

in Eq. (3.A1) reduces to the Michaelis-Menten reaction [see Eq. (3.14)]. In the

ensemble of enzymatic experiments, the corresponding kinetic equations become

dcE
dt

= k−1cES − k1cEcS,

dcES
dt

= k1cEcS − (k−1 + kcat)cES,

dcP
dt

= kcatcES,

(3.B1)

where cE and cS were defined before, whereas cES and cP are the concentrations

of substrate-enzyme complex and product, respectively. By replacing the con-

centrations of the chemical species with the probability distributions, we obtain

the kinetic equations for a single enzyme as in Eq. (3.17). In the steady sate,

dcES/dt = 0, the enzymatic velocity is given by

V =
dcP
dt

=
VmaxcS
KM + cS

, (3.B2)

where Vmax = kcat(cE + cES) is the maximum enzymatic velocity and KM =

(k−1 + kcat)/k1 is the Michaelis constant defined in Eq. (3.23).
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For a single-enzyme, the corresponding reaction velocity can be obtained

from the inverse of the total waiting time during one catalytic cycle. With the

use of Eq. (3.20), this velocity becomes

1

W
=

1

W0 +W1
=

kcatcS
KM + cS

, (3.B3)

which is termed the single-molecule Michaelis-Menten equation [3.32]. Compar-

ison of Eqs. (3.B2) and (3.B3) yields the relation

V

cE + cES
=

1

W
. (3.B4)

This relation originates from the equivalence between the average over a single

molecule’s long-time trace and that over a large ensemble of identical molecules,

i.e., the ergodicity [3.32, 3.33].

Appendix 3.C Derivation of ηe
In this Appendix, we present the derivation of ηe in Eq. (3.24). Using

Eq. (3.21), we calculate 〈r2y〉 in Eq. (3.8) as

ηe =
nζ

4

∫
dr

[
r2ye

−βU(r,0) + νr2ye
−βU(r,1)

]
∫
dr [e−βU(r,0) + νe−βU(r,1)]

. (3.C1)

With the use of Eq. (3.A4) for N = 1, we obtain

ηe =
nζ

4

(
〈r2y〉0 +

[
〈r2y〉1 − 〈r2y〉0

] zν

1 + zν

)
. (3.C2)

Since nζ〈r2y〉0/4 = η0 and nζ〈r2y〉1/4 = η1, we obtain Eq. (3.24). The viscosity

of a Fraenkel dimer solution η0 is given by Eq. (3.11).

Next we calculate η1 in Eq. (3.25) as

η1 =
nζ

4

∫
dr r2ye

−βU(r,1)

∫
dr e−βU(r,1)

=
nζ

12

∫∞
0 dr r4e−βU(r,1)

∫∞
0 dr r2e−βU(r,1)

. (3.C3)

For a harmonic potential, the integration of rm can be generally expressed as

gm(p, q) =

∫ ∞

0

dr rme−p(r−q)2

=

∫ ∞

−q

du (u+ q)me−pu2

=
m∑

n=0

m!

(m− n)!n!
qm−n

∫ ∞

−q

du une−pu2
. (3.C4)
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The last integral can be further performed as follows.
∫ 0

−q

du une−pu2
+

∫ ∞

0

du une−pu2

=
p−(n+1)/2

2

[
(−1)n

∫ pq2

0

dt t(n+1)/2−1e−t +

∫ ∞

0

dt t(n+1)/2−1e−t

]
,

=
p−(n+1)/2

2

[
[1 + (−1)n]

∫ ∞

0

dt t(n+1)/2−1e−t − (−1)n
∫ ∞

pq2
dt t(n+1)/2−1e−t

]
.

(3.C5)

Finally, gm(p, q) becomes

gm(p, q) =
1

2

m∑

n=0

m!

(m− n)!n!
p−(n+1)/2qm−n

×
[
[1 + (−1)n]Γ

(
n+ 1

2

)
− (−1)nΓ

(
n+ 1

2
, pq2

)]
, (3.C6)

where Γ(x) =
∫∞
0 dt tx−1e−t and Γ(x,α) =

∫∞
α dt tx−1e−t are the gamma function

and the incomplete gamma function of the second kind, respectively [3.31].

Appendix 3.D Hydrodynamic interactions be-

tween two spheres

In this Appendix, we present the calculation of Eq. (3.35) for the Fraenkel

dimer model. With the assumption that the fluid is isotropic, the Oseen tensor

becomes δαβ/(6πηsr). Substituting it into Eq. (3.35) yields

h =
1

6πηs

∫
drψ0(r)/r∫
drψ0(r)

. (3.D1)

By taking m = 1, 2 in gm(p, q), Eq. (3.C6), the dimensionless combination ζh is

obtained as

ζh(ε) =
a

$0

g1(ε, 1)

g2(ε, 1)
=

a

$0

e−ε +
√
πε [1 + erf (

√
ε)]

e−ε +
√
πε[1 + 1/(2ε)] [1 + erf (

√
ε)]

. (3.D2)

For large dimers, a/$0 ) 1, the hydrodynamic effects become negligible. The

limiting behavior of h for the Hookean, ε) 1, and stiff Fraenkel dimers, ε+ 1,
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is given, respectively, by

ζh(ε) =






2a

$0

√
ε

π
ε) 1,

a

$0

1

1 + 1/(2ε)
ε+ 1.

(3.D3)
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Chapter 4

Lateral Diffusion Induced by

Enzymes in a Biomembrane †

4.1 Introduction

Biomembranes that consist of lipid bilayers can be regarded as thin two-

dimensional (2D) fluids, and membrane protein molecules as well as lipid molecules

are allowed to move laterally [4.1, 4.2]. These membrane inclusions are subject

to the thermal motion of lipid molecules, leading to random positional fluctu-

ations. Such a Brownian motion plays important roles in various life processes

such as transportation of materials or reaction between chemical species [4.3]. In

order to describe lateral diffusion of membrane proteins, a drag coefficient of a

cylindrical disc moving in a 2D fluid sheet has been theoretically studied in var-

ious membrane environments [4.4–4.10]. The obtained drag coefficient was used

to estimate the diffusion coefficients of membrane proteins through Einstein’s

relation under the assumption that the system is in thermal equilibrium [4.11].

In recent experiments, however, it has been shown that motions of parti-

cles inside cells are dominantly driven by random nonthermal forces rather than

thermal fluctuations [4.12, 4.13]. In these experimental works, they found that

†The material presented in this chapter was published in: Y. Hosaka, K. Yasuda, R.
Okamoto, and S. Komura, Phys. Rev. E 95, 052407 (2017).
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nonthermal forces in biological cells are generated by active proteins under-

going conformational changes with a supply of adenosine triphosphate (ATP).

These active fluctuations lead to enhanced diffusion of molecules in the cyto-

plasm [4.14, 4.15]. Biomembranes also contain various active proteins which,

for example, act as ion pumps by changing their shapes to exert forces to the

adjacent membrane and solvent [4.2]. Lipid bilayers containing such active pro-

teins have been called “active membranes”, and their out-of-plane fluctuations

(deformations) have already been investigated both experimentally and theo-

retically [4.16–4.18]. However, lateral motions of inclusions in membranes that

are induced by active proteins have not yet been considered. Since such active

forces give rise to enhanced diffusion, one needs to take into account both active

nonthermal fluctuations as well as passive thermal ones to calculate diffusion in

membranes.

Recently, Mikhailov and Kapral discussed an enhanced diffusion due to non-

thermal fluctuating hydrodynamic flows which are induced by oscillating active

force dipoles [see Fig. 4.1(a)] [4.19, 4.20]. They calculated the active diffusion

coefficient of a passive particle immersed either in a three-dimensional (3D) cy-

toplasm or in a 2D membrane, and showed that it exhibits a logarithmic size

dependence for the 2D case. Moreover, a chemotaxis-like drift of a passive par-

ticle was predicted when gradients of active proteins or ATP are present [4.19].

Later Koyano et al. showed that lipid membrane rafts, in which active proteins

are concentrated, can induce a directed drift velocity near the interface of a

domain [4.21]. In these works, they considered membranes that are smaller in

size than the hydrodynamic screening length. Huang et al. performed coarse-

grained simulations of active protein inclusions in lipid bilayers [4.22, 4.23]. In

Ref. [4.23], they showed that active proteins undergoing conformational motions

not only affect the membrane shape but also laterally stir the lipid bilayer so

that lipid flows are induced. Importantly, the flow pattern induced by an immo-

bilized protein resembles the 2D fluid velocity fields that are created by a force
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dipole.

Following Refs. [4.19, 4.20], we assume that an active protein behaves as

an oscillating force dipole which acts on the surroundings to generate hydrody-

namic flows that can induce motions of passive particles in the fluid. In this

paper, we investigate active diffusion and drift velocity of a particle in “free”

and “confined” membranes which are completely flat and infinitely large. In the

free membrane case, a thin 2D fluid sheet is embedded in a 3D solvent having

typically a lower viscosity than that of the membrane. Whereas in the confined

case, which mimics a supported membrane [4.24], a membrane is sandwiched

by two rigid walls separated by a finite but small distance from it. For both

the free and confined membrane cases, we employ general mobility tensors that

take into account the hydrodynamic effects mediated by the surrounding 3D

solvent [4.25–4.28]. Using the general mobility tensors, we numerically calcu-

late the active diffusion coefficient and the drift velocity as a function of the

diffusing particle size for the entire length scales. Furthermore, several asymp-

totic expressions are also derived in order to compare with numerical estimates

and thermal contributions. Importantly, our result leads to characteristic length

scales describing a crossover from nonthermal to thermal diffusive behaviors for

large scales.

In the next section, we present the expressions for the active diffusion co-

efficient and the drift velocity in 2D membranes [4.19]. We also review the

general mobility tensors for the free and confined membrane cases [4.25–4.28].

Using these expressions, we calculate in Sec. 4.3 the active diffusion coefficient

for the two geometries. In Sec. 4.4, we compare the thermal diffusion coefficient

with the obtained nonthermal diffusion coefficient, and discuss the characteristic

crossover lengths. In Sec. 4.5, we obtain the drift velocities as a function of the

particle size. The summary of our work and some numerical estimates for the

obtained quantities are given in Sec. 4.6.
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Figure 4.1: (a) The conformational change of an oscillating force dipole repre-
senting an active protein. Within a turnover cycle of the force dipole separated
by a distance x(t), it exerts two oppositely directed forces ±F(t) at time t. The
integral intensity of a force dipole is S (see the text). (b) Schematic picture
showing a flat and infinitely large membrane of 2D viscosity ηm that is located
at z = 0. The membrane is surrounded by a bulk solvent of 3D viscosity ηs, and
the two flat walls are located at z = ±h. The solvent velocity is assumed to
vanish at the surfaces of these walls. The “free membrane” and the “confined
membrane” cases correspond to the limits of h → ∞ and h → 0, respectively.
The yellow passive particle undergoes Brownian motion due to thermal and non-
thermal fluctuations. The latter contribution is induced by active force dipoles
which are homogeneously distributed in the membrane with a 2D concentration
c0.
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4.2 Active transport and mobility tensors in

membranes

4.2.1 Active diffusion coefficient

Active proteins in a 2D biological membrane, modeled as oscillating force

dipoles, produce nonequilibrium fluctuations and cause an enhancement of the

lateral diffusion of a passive particle. We assume that the spatially fixed force

dipoles are homogeneously and isotropically distributed in the membrane, and

they exert only in-plane lateral forces. The total diffusion coefficient is given

by D = DT + DA, where DT is the thermal contribution and determined by

Einstein’s relation (which will be discussed in Sec. 4.4), and DA is the active

nonthermal contribution given by [4.19]

DA =
Sc0
2

Ωββ′γγ′

∫
d2r

∂Gαβ(r)

∂rγ

∂Gαβ′(r)

∂rγ′
, (4.1)

where r = (x, y) denotes a 2D vector and we have introduced a notation

Ωββ′γγ′ =
1

8
(δββ′δγγ′ + δβγδβ′γ′ + δβγ′δβ′γ). (4.2)

Throughout this paper, the summation over repeated greek indices is assumed.

In Eq. (4.1), S is the integral intensity of a force dipole, c0 is the constant 2D

concentration of active proteins, and Gαβ(r) is the membrane mobility tensor

which will be discussed later separately.

Within a fluctuating “dimer model” as presented in Fig. 4.1(a), the mag-

nitude of a force dipole is given by m(t) = x(t)F (t), where x(t) is the dis-

tance between the two spheres and F (t) is the magnitude of the oppositely di-

rected forces. The statistical average of the dipole magnitude vanishes, i.e.,

〈m(t)〉 = 0, whereas the integral intensity S of a force dipole is given by

S =
∫∞
0 dt 〈m(t)m(0)〉 [4.19]. Since we assume that active proteins are homoge-

neously distributed in the membrane as shown in Fig. 4.1(b), it is sufficient to

consider only the isotropic diffusion as given by Eq. (4.1).

In deriving Eq. (4.1), the size of a dipole is assumed to be much smaller than
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the distance between the passive particle and active force dipoles [4.19]. At large

distances, almost any object that changes its shape would create a flow field that

corresponds to some force dipole. It should be noted, however, that the above

expression is not accurate when the distance between them becomes smaller. As

for the mobility tensor in 3D fluids, it is known that the Rotne-Prager mobility

tensor takes into account higher order corrections to the Oseen mobility tensor

and gives more accurate approximation at short distances [4.20]. Such a better

approximation has not been worked out so far for 2D fluid membranes, and

we shall only consider the lowest order contribution (see later calulations). In

the above, we have also assumed that force dipoles are spatially fixed in the

membrane. Since no forces are applied to fix the dipoles, such an approximation

is justified when the dynamics of force dipoles is much slower than that of the

passive particle.

4.2.2 Drift velocity

Although we have assumed above that c0 is constant, active proteins are often

distributed inhomogeneously in the membrane due to heterogeneous structures

such as sphingolipid-enriched domains [4.29, 4.30]. According to the “lipid raft”

hypothesis, theses domains act as platforms for membrane signaling and traffick-

ing [4.31]. Hence it is also important to consider the effects of nonuniform spatial

distribution of active proteins and to see how it affects the lateral dynamics in

membranes.

When a spatial concentration gradient ∇c of active protein is present, it

gives rise to an unbalanced induced forces between two points in the membrane.

Hence passive particles are subjected to a drift toward either lower or higher

concentration of active proteins, and a chemotaxis-like drift can occur. When the

absolute value of the concentration gradient |∇c| is assumed to be constant, the

induced drift velocity of a passive particle in the direction ∇c is given by [4.19]

V = −S|∇c|Ωββ′γγ′

∫
d2r n̂α

∂2Gαβ(r)

∂rγ∂rδ

∂Gδβ′(r)

∂rγ′
(r · n̂). (4.3)
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Here, the unit vector n̂ = ∇c/|∇c| denotes the direction of the concentration

gradient of active proteins. We shall employ the above expression to obtain the

lateral drift velocity in a membrane by using the membrane mobility tensor as

discussed below.

4.2.3 Membrane mobility tensors

Since we discuss active diffusion in an infinitely large flat membrane, we use

the 2D membrane mobility tensor which also takes into account the hydrody-

namic effects of the surrounding 3D solvent. We consider a general situation

as depicted in Fig. 4.1(b), where a fluid membrane of 2D shear viscosity ηm is

surrounded by a solvent of 3D shear viscosity ηs. Furthermore, we consider the

case in which there are two walls located symmetrically at an arbitrary distance

h from the flat membrane [4.25–4.28].

We denote the in-plane velocity vector of the fluid membrane by v(r) and the

lateral pressure by p(r). Assuming that the incompressibility condition holds for

the fluid membrane, we write its hydrodynamic equations as

∇ · v = 0, (4.4)

ηm∇2v −∇p+ fs + F = 0. (4.5)

The second equation is the 2D Stokes equation, where fs is the force exerted on

the membrane by the surrounding solvent, and F is any external force acting on

the membrane. If we denote the upper and lower solvents with the superscripts

±, the two solvent velocities v±(r, z) and pressures p±(r, z) obey the following

hydrodynamic equations, respectively

∇̂ · v± = 0, (4.6)

ηs∇̂2v± − ∇̂p± = 0, (4.7)

where ∇̂ stands for the 3D differential operator.

We assume that the surrounding solvent cannot permeate the membrane,

and impose the no-slip boundary condition between the membrane and the sur-
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rounding solvent at z = 0 [4.4, 4.5, 4.25–4.28]. Hence we require the conditions

v±z (r, 0) = 0, vα(r) = v±α (r, 0), (4.8)

where α = x, y. Furthermore, the solvent velocity vanishes at the walls located

at z = ±h, i.e., v±α (r,±h) = 0.

By solving the above coupled hydrodynamic equations in Fourier space with

k = (kx, ky) being the 2D wavevector, the 2D mobility tensor Gαβ(k) defined

through vα(k) = Gαβ(k)Fβ(k) can be obtained as [4.25–4.28]

Gαβ(k) =
δαβ − k̂αk̂β

ηm [k2 + νk coth(kh)]
, (4.9)

where k = |k| and k̂α = kα/k, and the ratio of the two viscosities ν−1 = ηm/(2ηs)

defines the Saffman–Delbrück (SD) hydrodynamic screening length [4.4, 4.5].

Notice that ηm and ηs have different dimensions, and ν−1 has a dimension of

length.

In order to perform analytical calculations, the two limiting cases of Eq. (4.9)

are considered, i.e., the “free membrane” case and the “confined membrane” case

corresponding to the limits of h → ∞ and h → 0, respectively [4.26–4.28]. For

the free membrane case, we take the limit kh + 1 in Eq. (4.9) and obtain the

following asymptotic expression

GF
αβ(k) =

δαβ − k̂αk̂β
ηm(k2 + νk)

. (4.10)

Hereafter, we shall denote the quantities for the free membrane case with the

superscript “F”. For the confined membrane case, on the other hand, we take

the opposite limit kh ) 1 and obtain

GC
αβ(k) =

δαβ − k̂αk̂β
ηm(k2 + κ2)

, (4.11)

where κ−1 = (h/ν)1/2 is the Evans–Sackmann (ES) screening length [4.7], and

we use the superscript “C” for the quantities related to the confined membrane

case. We note that the ES screening length κ−1 is the geometric mean of ν−1

and h so that we typically have κ−1 < ν−1.

Taking the inverse Fourier transform of Eqs. (4.10) and (4.11), we obtain the
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mobility tensors in the real space for the two limiting cases as [4.26–4.28]

GF
αβ(r) =

1

4ηm

[
H0(νr)− Y0(νr) +

2

πν2r2
− H1(νr)

νr
+

Y1(νr)

νr

]
δαβ

+
1

4ηm

[
− 4

πν2r2
+

2H1(νr)

νr
− 2Y1(νr)

νr
−H0(νr) + Y0(νr)

]
r̂αr̂β,

(4.12)

and

GC
αβ(r) =

1

2πηm

[
K0(κr) +

K1(κr)

κr
− 1

κ2r2

]
δαβ

+
1

2πηm

[
−K0(κr)−

2K1(κr)

κr
+

2

κ2r2

]
r̂αr̂β, (4.13)

respectively, where we have used the notations r = |r| and r̂α = rα/r. In the

above, Hn(z) are the Struve functions, Yn(z) the Bessel functions of the second

kind, and Kn(z) the modified Bessel functions of the second kind. The physical

meaning of the above expressions was also discussed in Refs. [4.32–4.34]. We

note that if there is only one wall instead of two walls, the definition of the ES

length needs to be modified as κ−1 → (2h/ν)1/2 [4.34]. In the next sections, we

shall use Eqs. (4.12) and (4.13) to calculate the active diffusion coefficients and

the drift velocity.

4.3 Active diffusion coefficient

4.3.1 Free membranes

We first calculate the active diffusion coefficient for the free membrane case

by substituting Eq. (4.12) into Eq. (4.1). Since the integrand in Eq. (4.1) diverges

logarithmically at short distances, we need to introduce a small cutoff length $c.

Physically, $c is given by the sum of the size of a passive particle (undergoing

lateral Brownian motion) and that of a force dipole [4.20]. In the following,

we generally assume that force dipoles are smaller than the diffusing object

whose size is represented by $c. This is further justified when we consider lateral

diffusion of a passive object that is larger than the SD or ES screening lengths.

Introducing a dimensionless vector z = νr scaled by the SD length, we can
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Figure 4.2: The plot of the scaled active diffusion coefficient DA as a function
of the scaled cutoff length δ = ν$c and ε = κ$c for the free membrane case
[solid line, see Eq. (4.14)] and the confined membrane case [dashed line, see
Eq. (4.19)], respectively. Here DA is scaled by Sc0/(256πη2m). The numbers
in this plot indicate the slope of the curves and represent the powers of the
algebraic dependencies.

write the active diffusion coefficient for the free membrane case as

DF
A =

Sc0
32π2η2m

Ωββ′γγ′

∫ ∞

δ

d2z
∂gFαβ(z)

∂zγ

∂gFαβ′(z)

∂zγ′
, (4.14)

where δ = ν$c is the dimensionless cutoff, and gFαβ(z) = 4πηmGF
αβ is the corre-

sponding dimensionless mobility tensor [see Eq. (4.12)]. We have first evaluated

the above integral numerically. In Fig. 4.2, we plot the obtainedDF
A as a function

of δ = ν$c by the solid line. We see that the active diffusion coefficient depends

only weakly on the particle size at small scales, whereas it shows a stronger size

dependence described by a power-law behavior at large scales. The crossover

between these two behaviors is set by the condition δ ≈ 1.

In order to understand the above behaviors, we next discuss the asymptotic

behaviors of DF
A for both small and large δ values. Expanding the mobility

tensor in Eq. (4.12) for νr ) 1 and νr + 1, we have [4.34]

gFαβ(z) ≈
(
ln

2

z
− γ − 1

2

)
δαβ + ẑαẑβ, (4.15)
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and

gFαβ(z) ≈
2

z
ẑαẑβ, (4.16)

respectively, where γ ≈ 0.5772 is Euler’s constant. By substituting Eqs. (4.15)

and (4.16) into Eq. (4.14), we can analytically obtain the asymptotic forms of

the active diffusion coefficient as a function of δ = ν$c.

As obtained in Ref. [4.19], we find for δ ) 1

DF
A ≈ Sc0

32πη2m
ln

L

$c
, (4.17)

where a large cutoff length L is introduced because the integral in Eq. (4.14) also

diverges logarithmically at large distances. In order to match with the numerical

estimation, we obtain L ≈ 0.682ν−1. The above logarithmic dependence on $c

means that DF
A depends only weakly on the particle size. We also note that the

above expression contains only the membrane viscosity ηm, and does not depend

on the solvent viscosity ηs. This is because the hydrodynamics at small scales is

primarily dominated by the 2D membrane property.

In the opposite limit of δ + 1, on the other hand, we show in the Appendix

A that the active diffusion coefficient becomes

DF
A ≈ 5Sc0

256πη2s

1

$2c
, (4.18)

which is an important result of this paper. This asymptotic expression decays as

1/$2c and depends now only on ηs, indicating that the membrane lateral dynam-

ics is governed by the surrounding 3D fluid at large scales. From the obtained

asymptotic expressions in Eqs. (4.17) and (4.18), the behavior of DF
A in Fig. 4.2

is explained as a crossover from a logarithmic dependence to an algebraic de-

pendence with a power of −2.
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4.3.2 Confined membranes

Next we consider the confined membrane case. With the use of Eq. (4.13)

the active diffusion coefficient can be written as

DC
A =

Sc0
32π2η2m

Ωββ′γγ′

∫ ∞

ε

d2w
∂gCαβ(w)

∂wγ

∂gCαβ′(w)

∂wγ′
, (4.19)

where w = κr is a different dimensionless variable, ε = κ$c is a differently scaled

cutoff, and gCαβ(w) = 4πηmGC
αβ is the corresponding dimensionless mobility ten-

sor [see Eq. (4.13)]. Performing the numerical integration of Eq. (4.19), we plot

in Fig. 4.2 the active diffusion coefficient DC
A as a function of ε = κ$c by the

dashed line. For small ε values, the behavior of DC
A is similar to that of DF

A,

while DC
A decays much faster than DF

A for large ε values.

To discuss these size dependencies, we use the asymptotic expressions of

Eq. (4.13) for κr ) 1 and κr + 1 given by [4.34]

gCαβ(w) ≈
(
ln

2

w
− γ − 1

2

)
δαβ + ŵαŵβ, (4.20)

and

gCαβ(w) ≈ − 2

w2
(δαβ − 2ŵαŵβ), (4.21)

respectively. Note that Eq. (4.20) is identical to Eq. (4.15) when w is replaced

by z. Hence, in the limit of ε) 1, the active diffusion coefficient for the confined

membrane case should be identical to Eq. (4.17) and is given by [4.19]

DC
A ≈ Sc0

32πη2m
ln

L

$c
. (4.22)

The large cutoff length should be taken here as L ≈ 1.12κ−1. As mentioned

before, the 2D hydrodynamic effect is more important at small scales, and DC
A

is logarithmically dependent on the particle size.

In the large size limit of ε + 1, on the other hand, we also show in the

Appendix A that DC
A asymptotically behaves as

DC
A ≈ Sc0

16πη2s

h2

$4c
, (4.23)

which is another important result. The obtained expression decays as 1/$4c



4.4. Total diffusion coefficient 129

which is much stronger than Eq. (4.18) for the free membrane case. According

to Eqs. (4.22) and (4.23), the behavior of DC
A in Fig. 4.2 can be understood as

a crossover from a logarithmic dependence to an algebraic dependence with a

power of −4.

4.4 Total diffusion coefficient

Having obtained the active diffusion coefficients for the free and the con-

fined membrane cases, we now discuss the total lateral diffusion coefficients in

membranes by considering both thermal and nonthermal contributions. Con-

cerning the thermal diffusion coefficient DF
T for the free membrane case, we use

an empirical expression obtained by Petrov and Schwille [4.35, 4.36]

DF
T(δ) =

kBT

4πηm

[
ln

2

δ
− γ +

4δ

π
− δ2

2
ln

2

δ

] [
1− δ3

π
ln

2

δ
+

c1δb1

1 + c2δb2

]−1

, (4.24)

where kB is the Boltzmann constant, T is the temperature, and the four nu-

merical constants are chosen as c1 = 0.73761, b1 = 2.74819, c2 = 0.52119, and

b2 = 0.51465 [4.36]. For the free membrane case, there is no exact analyti-

cal expression of the thermal diffusion coefficient which covers the entire size

range, except for the case where a 2D polymer chain is confined in a fluid mem-

brane [4.26]. Equation (4.24) is known to recover the correct asymptotic limits

of the thermal diffusion coefficients both for δ ) 1 [4.4, 4.5] and δ + 1 [4.6].

On the other hand, the thermal diffusion coefficient DC
T for the confined

membrane case was explicitly calculated by Evans et al. [4.7] and also by Ra-

machandran et al. [4.8–4.11]. In this case, the resulting expression is given by

DC
T(ε) =

kBT

4πηm

[
ε2

4
+
εK1(ε)

K0(ε)

]−1

. (4.25)

In Fig. 4.3, we plot DF
T as a function of the particle size δ by the solid line,

and DC
T as a function of ε by the dashed line for the whole size range. Their

asymptotic behaviors are separately discussed below.

When we consider the total diffusion coefficient D = DT + DA, we shall

neglected the contribution from thermal fluctuations of force dipoles. These
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Figure 4.3: The plot of the scaled thermal diffusion coefficient DT as a function
of the scaled cutoff length δ = ν$c and ε = κ$c for the free membrane case
[solid line, see Eq. (4.24)] and the confined membrane case [dashed line, see
Eq. (4.25)], respectively. Here DT is scaled by kBT/(4πηm). The numbers in
this plot indicate the slope of the curves and represent the powers of the algebraic
dependencies.

fluctuations can arise when force dipoles contain structural internal degrees of

freedom. However, such a contribution to the diffusion coefficient is small com-

pared to DT because it should be proportional to the product of kBT and the

concentration of force dipoles c0.

4.4.1 Free membranes

For the free membrane case, the total diffusion coefficient is given by DF =

DF
T + DF

A, where the active nonthermal contribution DF
A was discussed in the

previous section. Using Eqs. (4.24) and (4.17) in the limit of δ ) 1, we asymp-

totically have [4.4, 4.5]

DF ≈ kBT

4πηm

(
ln

2

ν$c
− γ

)
+

Sc0
32πη2m

ln
L

$c
, (4.26)

where both contributions are proportional to ln(1/$c).

For δ + 1, on the other hand, we obtain from Eqs. (4.24) and (4.18) [4.6]

DF ≈ kBT

16ηs

1

$c
+

5Sc0
256πη2s

1

$2c
. (4.27)

Since the $c-dependencies in Eq. (4.27) are different between the thermal and
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nonthermal contributions, we can introduce a new crossover length defined by

$∗ =
5Sc0

16πkBTηs
. (4.28)

This length scale characterizes a crossover from the 1/$2c-dependence to 1/$c-

dependence. When $c ) $∗ (but still ν−1 ) $c), the nonthermal contribution

dominates over the thermal one, while in the opposite limit of $c + $∗, the

thermal contribution is of primary importance.

4.4.2 Confined membranes

In the case of confined membranes, the total diffusion coefficient now becomes

DC = DC
T +DC

A. In the limit of ε) 1, we have from Eqs. (4.25) and (4.22) [4.7,

4.8]

DC ≈ kBT

4πηm

(
ln

2

κ$c
− γ

)
+

Sc0
32πη2m

ln
L

$c
, (4.29)

where both contributions exhibit a logarithmic dependence on $c as in the free

membrane case.

In the opposite limit of ε+ 1, we find from Eqs. (4.25) and (4.23) [4.7, 4.8]

DC ≈ kBT

2πηs

h

$2c
+

Sc0
16πη2s

h2

$4c
. (4.30)

Similar to the free membrane case, we can consider another characteristic length

defined by

$∗∗ =

(
Sc0h

8kBTηs

)1/2

. (4.31)

This length scale characterizes a crossover from the 1/$4c-dependence to 1/$2c-

dependence. We note that $∗∗ is essentially the geometric mean of $∗ and h.

Numerical estimates of these two characteristic length scales will be discussed

in Sec. 4.6.

4.5 Drift velocity

4.5.1 Free membranes

In this section, we calculate the drift velocity V of a passive particle due to

a concentration gradient of active force dipoles. For the free membrane case, we
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Figure 4.4: The plot of the scaled drift velocity V as a function of the scaled
cutoff length δ = ν$c and ε = κ$c for the free membrane case [solid line, see
Eq. (4.32)] and the confined membrane case [dashed line, see Eq. (4.35)], respec-
tively. Here V is scaled by S|∇c|/(128πη2m). The numbers in this plot indicate
the slope of the curves and represent the powers of the algebraic dependencies.

substitute Eq. (4.12) into Eq. (4.3) and obtain

V F =− S|∇c|
16π2η2m

Ωββ′γγ′

∫ ∞

δ

d2z n̂α

∂2gFαβ(z)

∂zγ∂zδ

∂gFδβ′(z)

∂zγ′
(z · n̂), (4.32)

where δ = ν$c and gFαβ(z) = 4πηmGF
αβ as before. Performing the numerical

integration of Eq. (4.32), we plot in Fig. 4.4 the drift velocity V F as a function

of δ by the solid line. Similar to the active diffusion coefficient DF
A, the drift

velocity V F depends weakly on the particle size at small scales, while it exhibits

a stronger size dependence at large scales. Such a crossover also occurs around

δ ≈ 1.

We next discuss the asymptotic behaviors of V F for small and large δ values.

With the use of Eqs. (4.15) and (4.16), we show in the Appendix B that the

asymptotic behaviors of V for δ ) 1 and δ + 1 are

V F ≈ S|∇c|
32πη2m

ln
L

$c
, (4.33)

and

V F ≈ 13S|∇c|
256πη2s

1

$2c
, (4.34)
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respectively, where we choose L ≈ 1.85ν−1. Note that Eq. (4.33) was previously

derived in Ref. [4.19] for a 2D membrane, while Eq. (4.34) is a new result. As

we see in Eqs. (4.33) and (4.34), there is a crossover from a logarithmic to an

algebraic dependence with a power of −2 when δ is increased. These behaviors

are consistent with the numerical plot in Fig. 4.4 for the free membrane case.

4.5.2 Confined membranes

Finally we calculate the drift velocity for the confined membrane case. Sub-

stituting Eq. (4.13) into Eq. (4.3), we now obtain

V C =− S|∇c|
16π2η2m

Ωββ′γγ′

∫ ∞

ε

d2w n̂α

∂2gCαβ(w)

∂wγ∂wδ

∂gCδβ′(w)

∂wγ′
(w · n̂), (4.35)

where ε = κ$c and gCαβ(w) = 4πηmGC
αβ as before. In Fig. 4.4, we present nu-

merically calculated V C as a function of ε by the dashed line. As ε is increased,

we see a crossover from a logarithmic to an algebraic dependence, although V C

decays faster than V F at large scales.

The asymptotic behaviors of V C for small and large ε values can be dis-

cussed similarly. Using Eqs. (4.20) and (4.21), we obtain in the Appendix B the

asymptotic expressions of V C for ε) 1 and ε+ 1 as

V C ≈ S|∇c|
32πη2m

ln
L

$c
, (4.36)

and

V C ≈ 3S|∇c|
16πη2s

h2

$4c
, (4.37)

respectively, and we choose L ≈ 3.05κ−1 to coincide with the numerical integra-

tion. We note that Eqs. (4.33) and (4.36) are identical and depend only on ηm

for small sizes [4.19].

From Fig. 4.4 and Eqs. (4.33), (4.34), (4.36) and (4.37), we see that the drift

velocity V is always positive. This means that passive particles move toward

higher concentrations of active proteins, and a chemotaxis-like drift takes place

in the presence of protein concentration gradients [4.19–4.21]. The dominant

viscosity dependence of V switches from ηm to ηs as the particle size exceeds the
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Table 4.1: Summary of the asymptotic dependencies of the thermal diffusion
coefficient DT, the active diffusion coefficient DA, and the drift velocity V on
the passive particle size $c. The numbers after the asymptotic expressions cor-
respond to the equation numbers in this paper.

Cases Limits DT DA V
free membrane ν"c ) 1 ln(1/"c) (4.26) ln(1/"c) (4.17) ln(1/"c) (4.33)

(hk + 1) ν"c + 1 1/"c (4.27) 1/"2c (4.18) 1/"2c (4.34)
confined membrane κ"c ) 1 ln(1/"c) (4.29) ln(1/"c) (4.22) ln(1/"c) (4.36)

(hk ) 1) κ"c + 1 1/"2c (4.30) 1/"4c (4.23) 1/"4c (4.37)

corresponding hydrodynamic screening length, namely, ν−1 or κ−1.

4.6 Discussion and conclusion

In this paper, we have investigated lateral diffusion induced by active force

dipoles embedded in a biomembrane. In particular, we have calculated the active

diffusion coefficient and the drift velocity for the free and the confined membrane

cases by taking into account the hydrodynamic coupling between the membrane

and the surrounding bulk solvent. The force dipole model in Refs. [4.19, 4.20]

and the general membrane mobility tensors obtained in Refs. [4.25–4.28] have

been employed in our work. When the size of a passive diffusing particle is

small, the active diffusion coefficients for the free and the confined membranes

represent the same logarithmic size dependence, as shown in Eqs. (4.17) and

(4.22), respectively [4.19]. In the opposite large size limit, we find algebraic

dependencies with powers −2 and −4 for the two cases, as given by Eqs. (4.18)

and (4.23), respectively. These are the important outcomes of this paper and

are also summarized in Table 5.1 together with other asymptotic expressions.

In our work, we have assumed that the total diffusion coefficient is provided

by the sum of thermal and nonthermal contributions. For small particle sizes,

we have shown that both the total DF and DC exhibit a logarithmic size depen-

dence [4.19], whereas different contributions have different size dependencies for

large particle sizes. From this result, we have obtained two characteristic length

scales that describe the crossover from nonthermal to thermal behaviors when
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the particle size is larger than the hydrodynamic screening length. The drift ve-

locity in the presence of a concentration gradient of active proteins exhibits the

same size dependencies as the active diffusion coefficient for the two membrane

geometries.

Here we give some numerical estimates of the obtained crossover length

scales. Using typical values such as kBT ≈ 4 × 10−21 J, ηs ≈ 10−3 Pa·s, h ≈

10−9m, S ≈ 10−42 J2·s, and c0 ≈ 1014m−2 [4.19], we obtain $∗ ≈ 2× 10−6m [see

Eq. (4.28)] and $∗∗ ≈ 6×10−8m [see Eq. (4.31)]. On the other hand, the SD and

the ES screening lengths are typically ν−1 ≈ 5× 10−7m and κ−1 ≈ 2× 10−8m,

respectively [4.4, 4.5, 4.7, 4.8]. Hence $∗ and $∗∗ are typically larger than ν−1

and κ−1, respectively. Moreover, the values of S and c0 can vary significantly

in one membrane to another as pointed out in Ref. [4.19]. For example, when

active proteins are confined in raft domains [4.29–4.31], the 2D concentration

c0 can be much larger. When, for example, c0 ≈ 1015m−2 (while S is the same

as above) [4.21], the crossover length can be estimated as $∗ ≈ 2 × 10−5m and

$∗∗ ≈ 2 × 10−7m. If $∗ and $∗∗ are much larger than the screening lengths

ν−1 and κ−1, respectively, as in this case, the three different scaling regimes of

the total diffusion coefficient are expected as the particle size is increased, i.e.,

ln(1/$c) → 1/$2c → 1/$c for the free membrane case, and ln(1/$c) → 1/$4c → 1/$2c

for the confined membrane case.

Momentum in a membrane is conserved over distances smaller than the hy-

drodynamic screening length (either ν−1 or κ−1), whereas it leaks to the sur-

rounding fluid beyond that length scale [4.32–4.34]. Within a membrane, the

velocity decays as ln(1/r) at short distances, as shown in Eqs. (4.15) and (4.20),

due to the momentum conservation in 2D. These 2D behaviors also lead to the

logarithmic dependence of the active diffusion coefficients in Eqs. (4.17) and

(4.22). For the free membrane case, the velocity decays as 1/r at large scales as

shown in Eq. (4.16) due to the momentum conservation in the 3D bulk. This

behavior is reflected in the first term of Eq. (4.27) for the thermal diffusion
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coefficient [4.6]. As shown in Eq. (4.21), however, the velocity decays as 1/r2

at large scales for the confined membrane case. This behavior essentially arises

from the mass conservation in 2D while the total momentum is not conserved

due to the presence of the walls which break the translational symmetry of the

system [4.32–4.34]. The corresponding contribution is the first term of Eq. (4.30)

for the thermal diffusion coefficient [4.7, 4.8].

The active diffusion coefficient DF
A obtained in Eq. (4.18) for the free mem-

brane case essentially reflects the hydrodynamics of the surrounding bulk 3D

solvent. Hence our result can be compared with that in Ref. [4.19] obtained for

a purely 3D fluid system:

D3D
A ≈ Sc3D0

60πη2s

1

$c
, (4.38)

which decays as 1/$c and is different from Eq. (4.18). In fact, such a difference

arises from the different dimensions of the dipole concentrations, i.e., c0 is the

2D concentration in our case, while c3D0 is the 3D concentration in Ref. [4.19].

A similar comparison can be also made for the drift velocity of free membranes

in Eq. (4.34) and that in Ref. [4.19] for a 3D fluid system:

V 3D ≈ S|∇c3D|
30πη2s

1

$c
. (4.39)

The same reason holds for the different $c-dependence.

At this stage, we also comment that both the active diffusion coefficient DA

and the drift velocity V exhibit the same $c-dependence. Although the inte-

grands in Eqs. (4.1) and (4.3) look apparently different, their physical dimen-

sions are identical because the first derivative of the mobility tensor in Eq. (4.1)

corresponds to the product of the second derivative and (r · n̂) in Eq. (4.3). This

is the simple reason that they exhibit the same $c-dependence. One can also

easily confirm that V is positive when we make use of the membrane mobility

tensor, because the integrand in Eq. (4.3) is the product of the first and the

second derivatives of the mobility tensor which have opposite signs. This leads

to V > 0 indicating a chemotaxis-like drift as mentioned before.



4.A. Derivation of Eqs. (4.18) and (4.23) 137

In this work, we have assumed that active proteins generate forces only in

the lateral directions. On the other hand, actual active motors such as bacteri-

orhodopsin can also exert forces to the surrounding solvent [4.16–4.18]. Although

we did not take into account such normal forces which induce membrane undu-

lation, consideration of normal forces as well as lateral ones will provide us with

a general understanding of active diffusion in biomembranes [4.37].

We have also assumed that the force dipoles are fixed in a membrane and are

distributed homogeneously. It would be interesting to consider the case when

active proteins can also move laterally in the membrane and even interact with

each other through a nematic-like interaction [4.38]. The full equation of motion

now involves potential-of-mean-force interactions in the multi-particle diffusion

equations that describe the combined motions of the passive particle and active

proteins in the membrane. Although the dynamics of the active protein con-

centration is essentially determined by a diffusion equation, it is a complicated

problem because not only thermal diffusion but also active nonthermal diffusion

should be taken into account. Our work is the first step toward such a full

description of very rich biomembrane dynamics.

Appendix 4.A Derivation of Eqs. (4.18) and (4.23)

Since Eqs. (4.17) and (4.22) have been obtained in Ref. [4.19], we show

here the derivation of Eqs. (4.18) and and (4.23). Substituting Eq. (4.16) into

Eq. (4.14), we get

DF
A =

Sc0
8π2η2m

∫ ∞

δ

d2zΩββ′γγ′
∂

∂zγ

(
ẑαẑβ
z

)
∂

∂zγ′

(
ẑαẑβ′

z

)
, (4.A1)

where z = νr. Since

∂

∂zγ

(
ẑαẑβ
z

)
=

1

z3
(δαγzβ + δβγzα)−

3

z5
zαzβzγ, (4.A2)

the integrand in Eq. (4.A1) becomes

∂

∂zγ

(
ẑαẑβ
z

)
∂

∂zγ′

(
ẑαẑβ′

z

)
=

1

z4
δβγδβ′γ′ +

1

z6
[δγγ′zβzβ′ − 2(δβγzβ′zγ′ + δβ′γ′zβzγ)]
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+
3

z8
zβzβ′zγzγ′ . (4.A3)

By operating Ωββ′γγ′ , we have

Ωββ′γγ′
∂

∂zγ

(
ẑαẑβ
z

)
∂

∂zγ′

(
ẑαẑβ′

z

)
=

5

8z4
. (4.A4)

After the integration, we obtain Eq. (4.18).

Similarly, we substitute Eq. (4.21) into Eq. (4.19) and obtain

DC
A =

Sc0
8π2η2m

∫ ∞

ε

d2wΩββ′γγ′
∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ′

(
δαβ′ − 2ŵαŵβ′

w2

)
,

(4.A5)

where w = κr. Since

∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)
= − 2

w4
(δαβwγ + δβγwα + δαγwβ) +

8

w6
wαwβwγ, (4.A6)

we obtain

∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ′

(
δαβ′ − 2ŵαŵβ′

w2

)

=
4

w6
δβγδβ′γ′ +

4

w8
[δββ′wγwγ′ + δβ′γwβwγ′ + δβγ′wβ′wγ + δγγ′wβwβ′

− 2(δβγwβ′wγ′ + δβ′γ′wβwγ)]. (4.A7)

By operating Ωββ′γγ′ , we have

Ωββ′γγ′
∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ′

(
δαβ′ − 2ŵαŵβ′

w2

)
=

4

w6
. (4.A8)

After the integration, we obtain Eq. (4.23).

Appendix 4.B Derivation of Eqs. (4.34) and (4.37)

In this Appendix, we show the derivation of Eqs. (4.34) and (4.37). Substi-

tuting Eq. (4.16) into Eq. (4.32), we obtain

V F =− S|∇c|
4π2η2m

∫ ∞

δ

d2z Ωββ′γγ′n̂α
∂2

∂zγ∂zδ

(
ẑαẑβ
z

)
∂

∂zγ′

(
ẑδẑβ′

z

)
(z · n̂). (4.B1)

In the above, the derivatives are

∂2

∂zγ∂zδ

(
ẑαẑβ
z

)
=

1

z3
(δαδδβγ + δαγδβδ)−

3

z5
(δαδzβzγ + δβδzαzγ + δαγzβzδ + δβγzαzδ

+ δγδzαzβ) +
15

z7
zαzβzγzδ, (4.B2)
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and

∂2

∂zγ∂zδ

(
ẑαẑβ
z

)
∂

∂zγ′

(
ẑδẑβ′

z

)

= − 1

z6
[2δβ′γ′(δαγzβ + δβγzα)− (δαγ′δβγ + δαγδβγ′)zβ′ ]

− 3

z8
[(δαγ′zβzγ + δβγ′zαzγ − δαγzβzγ′ − δβγzαzγ′

+ δγγ′zαzβ)zβ′ − 2δβ′γ′zαzβzγ]−
3

z10
zαzβzβ′zγzγ′ . (4.B3)

By operating Ωββ′γγ′ , we have

Ωββ′γγ′
∂2

∂zγ∂zδ

(
ẑαẑβ
z

)
∂

∂zγ′

(
ẑδẑβ′

z

)
= −13zα

8z6
. (4.B4)

After the integration, we obtain Eq. (4.34).

Next we substitute Eq. (4.21) into Eq. (4.35) and find

V C = −S|∇c|
4π2η2m

∫ ∞

ε

d2wΩββ′γγ′n̂α
∂2

∂wγ∂wδ

(
δαβ − 2ŵαŵβ

w2

)

× ∂

∂wγ′

(
δδβ′ − 2ŵδŵβ′

w2

)
(w · n̂). (4.B5)

Here the derivatives are

∂2

∂wγ∂wδ

(
δαβ − 2ŵαŵβ

w2

)
= − 2

w4
(δαβδγδ + δαγδβδ + δαδδβγ)

+
8

w6
(δαβwγwδ + δβδwαwγ + δαδwβwγ + δαγwβwδ

+ δβγwαwδ + δγδwαwβ)−
48

w8
wαwβwγwδ, (4.B6)

and

∂2

∂wγ∂wδ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ′

(
δδβ′ − 2ŵδŵβ′

w2

)

= − 4

w8
[3δβ′γ′(δαβwγ + δαγwβ + δβγwα)− (δαβδγβ′ + δαγδββ′ + δαβ′δβγ)wγ′

− (δαβδγγ′ + δαγδβγ′ + δαγ′δβγ)wβ′ ] +
16

w10
[(δαβwβ′wγ − δββ′wαwγ − δαβ′wβwγ

+ δαγwβwβ′ + δβγwαwβ′ − δβ′γwαwβ)wγ′ − (δβγ′wαwγ + δαγ′wβwγ + δγγ′wαwβ)wβ′

+ 3δβ′γ′wαwβwγ]. (4.B7)

By operating Ωββ′γγ′ , we find

Ωββ′γγ′
∂2

∂wγ∂wδ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ′

(
δδβ′ − 2ŵδŵβ′

w2

)
= −12wα

w8
. (4.B8)
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After the integration, we obtain Eq. (4.37).
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Chapter 5

Nonreciprocal Response of a

Two-Dimensional Fluid with

Odd Viscosity †

5.1 Introduction

Two-dimensional (2D) active chiral fluids have been predicted to have a new

rheological property called odd viscosity [5.1]. Over two decades ago, Avron has

shown that when time-reversal and parity symmetries are broken, the viscosity

tensor of a 2D isotropic fluid could have an anti-symmetric (odd) part that does

not result in dissipation [5.1, 5.2]. The origin of the odd viscosity is explained by

coarse-grained theories, such as Onsager’s reciprocal relations [5.1] and Green-

Kubo relations for viscosity coefficients [5.3–5.5]. Furthermore, in microscopic

approaches, it was shown that active chiral fluids composed of self-spinning

objects also exhibit odd viscosity [5.2, 5.6].

In order to observe odd viscosity in physical systems, several protocols have

been proposed. For incompressible fluids, it was predicted that odd viscosity

can emerge at a dynamical boundary that is subjected to no-stress boundary

†The material presented in this chapter was published in: Y. Hosaka, S. Komura, and D.
Andelman, Phys. Rev. E 103, 042610 (2021).
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conditions [5.7, 5.8]. Experimentally, Soni et al. measured odd viscosity in active

chiral fluids by observing the boundary dynamics of a fluid [5.9]. Odd viscosity

has also been measured by using molecular dynamics simulations and its Green-

Kubo representation [5.4, 5.5].

In addition, more fundamental phenomena in active chiral systems, such

as responses to point forces or finite-size bodies, have been studied theoreti-

cally [5.7, 5.10–5.14]. Recently, the nonreciprocity of the point force response

was investigated in a 3D anisotropic fluid with odd viscosity [5.10] as well as

in an active solid material [5.11, 5.12]. As for the finite-size body response, lift

force was observed in active chiral granular media [5.13] and in a 2D fluid with

inertia [5.14], whereas no such force was found in the incompressible limit [5.7].

Despite these intensive findings, very little is known about the linear hydrody-

namic response of a 2D active chiral fluid.

In this paper, we discuss the hydrodynamic response of a 2D isotropic com-

pressible fluid with odd viscosity, which can be regarded as a 2D active chiral

fluid [5.1–5.3]. Taking into account the 3D bulk fluid coupled to the 2D fluid

layer and employing the lubrication approximation for the 3D fluid [5.15–5.17],

we analytically obtain the asymmetric mobility tensor of the 2D fluid in the

presence of odd viscosity. Because of such a nonreciprocal hydrodynamic re-

sponse, a perpendicular fluid flow develops and breaks the axial symmetry of

the flow with respect to the driving force. Extending the point force response,

we derive viscous forces on a rigid disk that moves laterally in the 2D active

chiral fluid. As a consequence of the nonreciprocal hydrodynamic response due

to odd viscosity, we find that lift force acts on the driven disk.

There are two reasons that motivated us to consider a 2D compressible fluid

with odd viscosity in contact with an underlying 3D fluid. As pointed out in

Ref. [5.7], the velocity field is independent of the odd viscosity in a 2D in-

compressible fluid, when nonslip boundary conditions are imposed on a moving

object. This means that the effects of odd viscosity cannot be directly seen in a
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Table 5.1: The components associated with the three viscosity coefficients ηd
(dilatation), ηs (shear), and ηo (odd) in the ηijk! tensor under index permuta-
tions [see Eq. (5.2)]. The + (−) sign denotes that the components are symmetric
(anti-symmetric) under a given index permutation. Components that include
even (odd) number of εij are symmetric (anti-symmetric) under the parity trans-
formation in a 2D system (x → −x, y → y) [5.3].

Viscosity coefficients Components i ↔ j k ↔ " ij ↔ k" Parity
ηd δijδk! + + + +
ηs δikδj! + δi!δjk − δijδk! + + + +
ηo εikδj! + εj!δik + εi!δjk + εjkδi! + + − −

2D incompressible fluid. Moreover, for a pure 2D fluid at low Reynolds number,

a linear relation between the velocity and the viscous drag force acting on a

translating disk cannot be obtained [5.18, 5.19]. This is known as the Stokes

paradox that originates from the constraint of momentum conservation in a pure

2D system. This paradox can be resolved, e.g., by considering momentum decay

to an underlying 3D fluid [5.20–5.25].

In the next section, we review the concept of the odd viscosity [5.1–5.3].

Then, we introduce in Sec. 5.3 the hydrodynamic equations for the 2D active

chiral fluid layer by taking into account the coupling to the underlying 3D bulk

fluid [5.15–5.17]. In Sec. 5.4, we derive the corresponding mobility tensor and

calculate the velocity fields induced by a point force or a force dipole. In Sec. 5.5,

we discuss the force and torque acting on a moving disk of a finite size. Finally,

a summary of our work and some further comments are given in Sec. 5.6.

5.2 Odd viscosity

Here we briefly review the concept of odd viscosity and its contribution to

the fluid stress tensor in two dimensions [5.1–5.3]. First, the strain rate tensor

is defined as vk! = (∂kv! + ∂!vk)/2, where vi is the 2D velocity component,

∂i = ∂/∂ri is the 2D differential operator component, and r = (x, y). The

general linear relation between vk! and the fluid stress tensor σij is given by

σij = ηijk!vk!, (5.1)
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where ηijk! is the fourth-rank viscosity tensor. Throughout our work, we as-

sume summation over repeated indices. Notice that the choice of the Cartesian

coordinates is just done for convenience and is not a requirement.

In an isotropic fluid, rotational invariance of the system requires the symme-

try of the stress tensor under the exchange of indices i ↔ j, i.e., σij = σji. This

enforces the symmetry relation of the viscosity tensor ηijk! = ηjik!, as inferred

from Eq. (5.1). Since vk! is a symmetric tensor by definition, the symmetry under

the exchange k ↔ $ always holds, leading to the symmetry relation ηijk! = ηij!k.

Extending the above symmetry argument, Avron introduced a new type

of index exchange ij ↔ k$, which implies time-reversal transformation [5.1–

5.3]. In light of such a pair exchange, the viscosity tensor can generally be

split into symmetric (even) and anti-symmetric (odd) parts ηijk! = ηSijk! + ηAijk!,

where ηSijk! = ηSk!ij and ηAijk! = −ηAk!ij. The anti-symmetric term ηAijk! exists

as a consequence of broken time-reversal symmetry in a 2D fluid. Under the

assumption that σij is isotropic, the general viscosity tensor can be written

as [5.2, 5.3]

ηijk! =

ηdδijδk! + ηs (δikδj! + δi!δjk − δijδk!) +
1

2
ηo (εikδj! + εj!δik + εi!δjk + εjkδi!) ,

(5.2)

where ηd, ηs, and ηo are 2D dilatational, shear, and odd viscosities, respectively,

δij is the Kronecker delta, and εij is the 2D Levi-Civita tensor with εxx = εyy = 0

and εxy = −εyx = 1.

The above viscosity tensor ηijk! is symmetric under the parity transformation

in a 2D system (x → −x, y → y) [5.3], and hence it is parity-even. This

is because both σij and vk! are parity-even in Eq. (5.1). On the other hand,

terms that include odd number of εij are parity-odd. Hence, one concludes

from Eq. (5.2) that ηo exists only if both time-reversal and parity symmetries

are broken [5.2]. In Table 5.1, the above permutations of the viscosity-tensor
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components are summarized.

Substituting Eq. (5.2) into Eq. (5.1), we obtain the stress tensor of a 2D

compressible fluid with odd viscosity as

σij = (ηd − ηs)δij∂kvk + ηs(∂jvi + ∂ivj) +
1

2
ηo

(
∂jv

∗
i + ∂iv

∗
j + ∂∗j vi + ∂∗i vj

)
,

(5.3)

where v∗i ≡ εikvk is the velocity vector rotated clockwise by π/2 and ∂∗i ≡ εik∂k.

Since the odd viscosity does not contribute to the energy dissipation, (∂ivj)σij,

the sign of ηo can be either positive or negative.

5.3 Active chiral fluid

We consider a 2D layer of an active chiral compressible fluid particularly

having odd viscosity, which is flat, thin, infinitely large and overlays a 3D bulk

fluid (e.g. water). One of the realizations of such a system is schematically

depicted in Fig. 6.1. The bulk fluid has a 3D shear viscosity η and is in contact

with an impermeable flat wall located at z = 0, where the fluid velocity vanishes.

In order to clearly see the odd viscosity effect [5.7], we suppose that the 2D fluid

layer is compressible, so that it has both 2D dilatational and shear viscosities,

ηd and ηs, respectively. In physical systems, such a fluid can be realized by a

monolayer of amphiphiles that are loosely packed on the interface at z = h [5.15–

5.17]. More details on the physical realization of our model will be discussed in

Sec. 5.6.

In addition to the above viscosity coefficients, we assume that the 2D layer

has odd viscosity, ηo, that is an important measure of how far the fluid departs

from passive fluids. We will not specifically focus on the origin of the odd

viscosity, but it can be attributed, for example, to self-spinning objects immersed

in the 2D fluid layer that break both time-reversal and parity symmetries [5.2,

5.26]. In this case, one has to assume that the active rotors are homogeneously

distributed in the 2D fluid layer and their concentration is small enough. Under

this condition, the 2D layer can be regarded as a layer of a continuum active
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Figure 5.1: Schematic sketch of an active chiral fluid characterized by odd vis-
cosity. An infinitely large, flat, and thin 2D fluid layer (green) (e.g., a monolayer
formed by amphiphiles) is located at z = h having 2D dilatational, shear, and
odd viscosities, ηd, ηs, and ηo, respectively. The fluid interface is in contact with
air (z > h) and a 3D fluid underneath (0 < z < h) having a 3D shear viscosity
η. The 3D fluid is bounded by an impermeable flat wall located at z = 0, and
its velocity is assumed to vanish at z = 0. On the 2D fluid layer at z = h, both
time-reversal and parity symmetries are broken (e.g., due to the self-spinning
objects injecting energy into the fluid), giving rise to the possibility of an odd
viscosity, ηo, in the 2D layer.

chiral fluid with a constant odd viscosity, ηo.

For the 2D fluid layer introduced above, the momentum balance equation at

low Reynolds number can be written as

−∇Π+∇ · σ + fb + F = 0, (5.4)

where ∇ = (∂x, ∂y) stands for the 2D gradient operator, Π is the 2D hydrostatic

pressure, σ is the stress tensor given in Eq. (6.3) that includes the odd viscosity

ηo, fb is the force exerted on the 2D fluid layer by the underlying 3D bulk fluid,

and F is any other force density acting on the 2D fluid.

The bulk underneath the 2D fluid layer is a pure 3D fluid. We denote its

velocity field by the vector u(r, z) and the 3D hydrostatic pressure by p(r, z).

The corresponding Stokes equation is

η∇̃2u− ∇̃p = 0, (5.5)

with η being the 3D shear viscosity of the bulk fluid and ∇̃ being the 3D gradient
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operator. The incompressibility condition for u reads

∇̃ · u = 0. (5.6)

In order to obtain fb, we solve the hydrodynamic equations for the bulk fluid

in Eqs. (5.5) and (5.6) [5.15–5.17]. The boundary conditions on the 3D bulk

velocity u(r, z) are the stick (nonslip) conditions at the bottom surface of the

bulk fluid (z = 0) and at its top surface (z = h):

u(r, 0) = 0, u(r, h) = v(r), (5.7)

with v(r) being the in-plane velocity vector of the fluid layer at z = h. We now

use the lubrication approximation where the vertical component of the velocity,

uz, is neglected compared to the in-plane components and the vertical pressure

gradient vanishes, i.e., ∂p/∂z = 0. This assumption is justified as long as h is

smaller than any horizontal characteristic length scale of the bulk fluid velocity.

Under these assumptions, the 3D Stokes equation (5.5) reduces to

η
∂2

∂z2



ux

uy



−∇p = 0. (5.8)

Taking into account the boundary conditions in Eq. (5.7), the above equation

can be integrated to give

u(r, z) =
z2 − zh

2η
∇p(r) +

z

h
v(r). (5.9)

Then, the force exerted on the 2D fluid layer by the bulk fluid beneath is calcu-

lated as [5.15–5.17]

fb = −η ∂u
∂z

∣∣∣∣
z=h

= −h

2
∇p− η

h
v. (5.10)

Substituting the obtained fb into Eq. (6.1), one can show that the hydrodynamic

equation for the active chiral layer is

−∇Π+ ηd∇(∇ · v) + ηs∇2v + ηo∇2v∗ − h

2
∇p− η

h
v + F = 0, (5.11)

where the divergence of the in-plane velocity is given by the following rela-
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tion [5.15, 5.17]

∇ · v =
h2

6η
∇2p. (5.12)

This relation can be derived by taking the divergence of Eq. (5.9) and integrating

over the lubrication layer (0 ≤ z ≤ h) under the incompressibility condition of

Eq. (5.6) and the boundary conditions of Eq. (5.7). The fourth term on the

left-hand-side of Eq. (5.11) indicates that odd viscosity contributes to the fluid

flow that is perpendicular to the one generated by shear viscosity [5.2].

5.4 Hydrodynamic response of a point force

5.4.1 Mobility tensor

We derive the mobility tensor for the hydrodynamic response of the 2D fluid

layer with odd viscosity. The second-rank mobility tensor G(r) connects the

force density F acting on the fluid layer at position r′ with its induced velocity

at position r:

vi(r) =

∫
d2r′ Gij(r− r′)Fj(r

′). (5.13)

In order to derive Gij(r), we solve the hydrodynamic equations (5.11) and (5.12)

in Fourier space and obtain Gij[k], where k = (kx, ky), and the square brackets

indicate a function in Fourier space. We introduce two orthogonal unit vectors

k̂ = (kx/k, ky/k), k̄ = (−ky/k, kx/k), (5.14)

with k = |k|.

In Appendix 5.A, we show that Gij[k] has the following expression

Gij[k] =
ηs(k2 + κ2)k̂ik̂j + (ηs + ηd)(k2 + λ2)k̄ik̄j − ηok2εij

ηs(ηs + ηd)(k2 + κ2)(k2 + λ2) + η2ok
4

, (5.15)

where

κ2 =
η

hηs
, λ2 =

4η

h(ηs + ηd)
. (5.16)

Note that the ratio, η/ηs, gives the inverse length scale because the 2D viscosity,

ηs, has the dimension of Pa·s·m, while that of η is Pa·s. The lengths scales, κ−1
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Figure 5.2: Streamlines of the velocity v(x, y) rescaled by F/(2πηs) and gener-
ated by a point force, F = F êxδ(r), as a function of κx and κy while keeping
ηd = 3ηs. The force along the x-axis is applied at the origin (the black horizontal
arrow) for (a) µ = ηo/ηs = 0, (b) µ = 3, and (c) µ = −3 [see Eqs. (5.13) and
(5.19)]. The blue arrows indicate the flow direction.

Figure 5.3: Streamlines of the velocity v(x, y) rescaled by Fκ$/(2πηs) and gen-
erated by a force dipole as a function of κx and κy while keeping ηd = 3ηs. The
force dipole along the x-axis (d̂ = êx) is centered at the origin (the black double
arrow) for (a) µ = ηo/ηs = 0, (b) µ = 3, and (c) µ = −3 [see Eq. (5.23)]. The
blue arrows indicate the flow direction.

and λ−1, correspond to the hydrodynamic screening lengths beyond which the

2D layer exchanges momentum with the underlying bulk fluid. Importantly, the

numerator of Eq. (5.15) includes an anti-symmetric tensor εij.

For simplicity sake, we hereafter assume κ = λ (or equivalently ηd = 3ηs) in

Eq. (5.15) and consider the following simplified mobility tensor

Gij[k] =
(k2 + κ2)(4δij − 3k̂ik̂j)− µk2εij

ηs [4(k2 + κ2)2 + µ2k4]
, (5.17)

where

µ =
ηo
ηs
. (5.18)

The above dimensionless parameter, µ, is a measure of how far the 2D active



154 Chapter 5. Nonreciprocal Response of a 2D Fluid with Odd Viscosity

0 2 4 6 8 100.0

0.1

0.2

0.3

0 2 4 6 8 10

0.0

0.1

0.2

0 2 4 6 8 10-0.04

-0.02

0.00

0.02

0.04

Figure 5.4: Plots of the mobility coefficients rescaled by 2πηs as a function of κr
for various values of µ. (a) The longitudinal mobility coefficient Gxx for µ = 0,
3, and 5 (black, red, and blue lines). (b) The transverse mobility coefficient Gyy

for µ = 0, 3, and 5 (black, red, and blue lines). (c) The anti-symmetric mobility
coefficient Gxy for µ = −3, 0, and 3 (red dashed, black solid, and red solid lines).

chiral fluid departs from the passive fluid, e.g., due to the self-spinning active

objects.

As shown in Appendix 5.B, the real space representation of the mobility

tensor can be obtained by the inverse Fourier transform of Eq. (5.17) [5.27]

Gij(r) = C1(r)δij + C2(r)r̂ir̂j + C3(r)εij, (5.19)

where r̂ = r/r is a unit vector (r = |r|), and the three coefficients are given by

C1(r) =
1

2πηs

∫ ∞

0

dk
k(k2 + κ2)

4(k2 + κ2)2 + µ2k4

[
4J0(kr)−

3J1(kr)

kr

]
, (5.20)

C2(r) =
1

2πηs

∫ ∞

0

dk
3k(k2 + κ2)

4(k2 + κ2)2 + µ2k4

[
−J0(kr) +

2J1(kr)

kr

]
, (5.21)

C3(r) = − µ

2πηs

∫ ∞

0

dk
k3J0(kr)

4(k2 + κ2)2 + µ2k4
. (5.22)

In the above, Jn(x) is the Bessel function of the first kind [5.28]. When ηo = 0

(or µ = 0), C3 vanishes and Gij(r) reduces to that of a 2D passive compressible

fluid, G0
ij(r), which we analytically derive in Appendix 5.B [see Eq. (5.B5)].

Hereafter, the superscript “0” denotes quantities when µ = 0 (vanishing odd

viscosity). Under the exchange ηo ↔ −ηo, C1 and C2 of Eqs. (5.20) and (5.21)

remain unchanged, whereas C3 of Eq. (5.22) changes its sign.
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We briefly discuss the symmetry property of the mobility tensor obtained in

Eq. (5.19). From G0
ij in Eq. (5.B5), one sees that the mobility tensor of passive

fluids satisfies the symmetry property G0
ij = G0

ji, whereas for active chiral fluids,

such a symmetry does not hold, i.e., Gij (= Gji as shown in Eq. (5.19). This

asymmetry gives rise to the fluid velocity perpendicular to an applied force that

results from the nonreciprocal hydrodynamic response.

5.4.2 Velocity field

With the obtained mobility tensor, we first investigate the velocity field in-

duced by a point force acting on a 2D fluid layer with odd viscosity. Substituting

Eq. (5.19) into Eq. (5.13), we calculate the velocity field induced by a point force

at the origin, F = F êxδ(r), with êx being a unit vector in the x-direction. The

obtained velocity field is plotted in Fig. 5.2 for µ = 0, 3, and −3. When µ = 0,

we see axisymmetric streamlines that pass through the applied force (the black

horizontal arrow), as in Fig. 5.2(a). There are two vortices whose center is lo-

cated at (κx,κy) ≈ (0,±2.0). They result from the nature of the 2D fluid layer

with the hydrodynamic screening length, κ−1.

When µ is finite, however, a perpendicular flow in the y-direction starts to de-

velop and accordingly, the axial symmetry breaks down, as shown in Figs. 5.2(b)

and (c). This behavior results from the nonreciprocal hydrodynamic response

in the presence of the odd viscosity. When µ = ±3, the vortices approach to the

positions (0,±3.0), meaning that finite values of µ causes an effective increase

in the hydrodynamic length, κ−1.

We next calculate the flow field generated by a hydrodynamic force dipole

that is composed of two point forces directed oppositely to each other. When

a force dipole at the origin is directed along a given unit vector d̂, its induced

velocity field is given by [5.29]

vi(r) = −F $d̂k∂kGij(r)d̂j. (5.23)

Here, F is the force magnitude, $ is the distance between the two point forces,
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and the limit $ ) r is assumed. In Fig. 5.3, we plot the force dipole along

the x-axis (i.e., d̂ = êx) for µ = 0, 3, and −3. When µ = 0, the streamlines

have an axial symmetry along the x-direction as well as the y-direction, as

shown in Fig. 5.3(a). For µ = ±3, however, flows perpendicular to the applied

forces become dominant, and both mirror symmetries are broken, as shown in

Fig. 5.3(b) and (c).

5.4.3 Mobility coefficients

Next, we investigate each component of the mobility tensor in Eq. (5.19).

If we choose the x-axis, without loss of generality, along the r direction, i.e.,

r = rêx, the longitudinal, transverse, and anti-symmetric mobility coefficients

are given by Gxx = C1 + C2, Gyy = C1, and Gxy = −Gyx = C3, respectively.

The nonzero mobility coefficient Gxy is characteristic of the active chiral fluid

with finite odd viscosity, while Gxx and Gyy remain in the limit of ηo → 0. Note

that both Gxx and Gyy also depend on ηo, as seen in Eqs. (5.20) and (5.21).

In Fig. 5.4, we plot Gxx, Gyy, and Gxy as a function of κr for various values of

µ, while keeping ηd = 3ηs. We see that Gxx decreases monotonically with κr for

all the µ values, as shown in Fig. 5.4(a). The decrease of Gxx is more enhanced

for lager µ, whereas Gxx weakly depends on µ for larger κr. This reflects the

fact that, for κr + 1, the 3D hydrodynamic effect becomes more important,

and Gxx is almost independent of the odd viscosity ηo. In Fig. 5.4(b), on the

other hand, Gyy takes negative values because the 2D fluid layer can flow in the

direction opposite to the applied force [5.23]. Such a behavior results from the

two vortices shown in Fig. 5.2.

The mobility coefficient Gxy describes the nonreciprocal hydrodynamic re-

sponse because it gives the relation between the applied force Fy and induced

velocity vx. When µ = 0, Gxy is always zero as it should be, whereas for

µ = ±3, it exhibits nonmonotonic behavior, as shown in Fig. 5.4(c). This means

that when the system is active, an applied force in the 2D fluid layer generates

a perpendicular flow, giving rise to the broken mirror symmetry with respect to
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the force direction, even when the fluid layer is isotropic. When ηo is positive,

Gxy takes negative (κr < 2) and positive values (κr > 2), corresponding to the

attractive and repulsive flows, respectively, and vice versa for negative ηo. These

flow patterns can lead to either convergence or dispersion of surrounding inclu-

sions, and the specific behavior depends on the hydrodynamic screening length,

κ−1.

5.5 Hydrodynamic response of a rigid disk

5.5.1 Boundary integral equation

So far, we have discussed the hydrodynamic response induced by a point

force and a force dipole in a 2D fluid layer with odd viscosity using the mobility

tensor in Eq. (5.19). Here we generalize the discussion to the situation where the

response is induced by a finite-size body moving in the 2D fluid layer. For a pas-

sive fluid, the force acting on such a body can be calculated by using a boundary

integral equation that is based on the Lorentz reciprocal theorem [5.30, 5.31].

In Appendix 5.C, we first generalize this theorem for a 2D compressible fluid

with finite ηo. Then, in Appendix 5.D, we derive the corresponding boundary

integral equation that is used in the following analysis.

Consider a circular rigid disk of radius R, which translates and rotates in the

2D fluid. We assume that a no-slip boundary condition holds at the disk perime-

ter and further consider the limit of κR ) 1. As detailed in Appendix 5.D, the

velocity at any point on the disk perimeter (R = Rr̂) can be expressed in terms

of the following boundary integral equation

Ui + εijkΩjRk = −
∫

Cu

ds(R′) fj (R
′)Gji (R−R′) , (5.24)

where U and Ω are the lateral and angular velocities of the rigid disk, respec-

tively, and εijk is the 3D Levi-Civita tensor. The right-hand-side of Eq. (5.24)

is a line integral over an unspecified closed curve Cu, and ds(R′) indicates that

R′ is the integration variable. The boundary integral equation (5.24) relates
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the velocities of the disk moving in the 2D fluid layer with the accompanying

unknown force distribution f .

5.5.2 Translational and rotational frictions

Since the governing hydrodynamic equation (5.11) is linear in v, the transla-

tional motion is decoupled from the rotational one. Hence, the following linear

relations hold

Fd = −Γ ·U, Td = −ΛΩ, (5.25)

where F d
i =

∫
Cu

ds(R′) fi(R′) and T d
i = εijk

∫
Cu

ds(R′)R′
jfk(R

′) are the force

and torque acting on the disk, respectively, while Γ is the translational friction

tensor and Λ is the rotational friction coefficient. The minus signs in Eq. (5.25)

take into account that the force and torque act opposite to the velocities. Note

that Λ is a scalar because both Td and Ω must point to the z-direction in a 2D

system.

Using the assumption |R′| ) |R| in Eq. (5.24) [5.22], we obtain the expres-

sions for Γ and Λ as

Γ =
1

(C1 + C2/2)
2 + C2

3



C1 + C2/2 C3

−C3 C1 + C2/2



 , (5.26)

Λ =
2R2

C2 −R(∂C1/∂R)
. (5.27)

See Appendix 5.E for the derivation. In the above, the arguments of the three

coefficients are omitted, Cn ≡ Cn(R) (n = 1, 2, 3), in order to keep the notation

compact. For passive fluids, the translational friction tensor must be symmetric

and positive definite according to the requirement that the dissipated energy

is positive [5.32]. For the considered fluid with ηo, however, the translational

friction tensor is allowed to be asymmetric when C3 is nonzero. Notice that the

energy dissipation calculated from Eq. (5.26) is UiΓijUj ∼ (C1 + C2/2)U2 and

the anti-symmetric part does not contribute to the dissipation.

For a disk translating with the velocity U = (U, 0), we have the viscous drag
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Figure 5.5: Plots of the drag (Γ‖) and lift (Γ⊥) coefficients rescaled by 2πηs as
a function of the rescaled disk radius κR. (a) The drag coefficient Γ‖ for µ = 0,
3, and 5 (black, red, and blue solid lines). The dotted line represents the full
expression Γ0

‖ for the drag coefficient when µ = 0 reported in Ref. [5.15] (see the
text for the specific expression). (b) The lift coefficient Γ⊥ for µ = −5, −3, 0,
3, and 5 (blue dashed, red dashed, black solid, red solid, and blue solid lines).

and lift coefficients as Γ‖ = Γxx and Γ⊥ = Γyx, respectively. In Fig. 5.5, we plot

Γ‖ and Γ⊥ as a function of the dimensionless radius κR for various values of µ.

We see that Γ‖ increases monotonically with increasing the disk size for all µ

values, as seen in Fig. 5.5(a). For a fixed disk size, Γ‖ is larger for larger µ values.

The dotted line in Fig. 5.5(a) is the full analytical result for µ = 0 (2D passive

compressible fluid) [5.15], Γ0
‖/(2πηs) =

4
5(κR)2K2(κR)/K0(κR), where Kn(x) is

the modified Bessel function of the second kind [5.28]. Our result obtained by

using the boundary integral equation (5.24) coincides with the analytical one
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when κR ) 1.

In Fig. 5.5(b), we see that Γ⊥ shows both increasing and decreasing depen-

dencies on κR for positive and negative values of µ, respectively. However, when

µ = 0, Γ⊥ is always zero, as it should be. Finite values of Γ⊥ mean that the

disk translated along the x-axis presents a lift motion along the y-direction. For

a fixed disk size, the absolute value of Γ⊥ increases and the lift force is more

enhanced as the absolute value of µ increases.

Assuming that the disk is rotating with velocity Ω = (0, 0,Ω), we obtain the

rotational friction coefficient Λ that is plotted in Fig. 5.6 as a function of κR. We

see that Λ shows an increasing dependency on κR for all the µ values. The dotted

line in Fig. 5.6 represents the full analytical expression for µ = 0 (2D passive

incompressible fluid) [5.20], κ2Λ0/(4πηs) = (κR)2 + 1
2(κR)3K0(κR)/K1(κR).

The solid black line and the dotted line coincide in the limit of κR ) 1, because

the disk rotation contributes neither to the compression nor to the expansion of

fluids.
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Figure 5.6: Plot of the rotational friction coefficient (Λ) rescaled by 4πηs/κ2

as a function of the rescaled disk radius κR for µ = 0, 3, and 5 (black, red,
and blue solid lines). The dotted line represents the full expression Λ0 for the
rotational coefficient when µ = 0 reported in Ref. [5.20] (see the text for the
specific expression).
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5.6 Discussion and conclusion

We have investigated the linear hydrodynamic response of a 2D fluid layer

with broken time-reversal and parity symmetries. Such a 2D active fluid presents

a special rheological property called odd viscosity, characterizing the deviation

of the system from a passive fluid. In our approach, we combine the concept of

the odd viscosity [5.1–5.3] and the hydrodynamic model of a 2D compressible

fluid derived by using the lubrication approximation [5.15–5.17]. In contrast

to well-studied 2D fluids characterized by a shear viscosity [5.20–5.25], the ad-

ditional odd viscosity ηo leads to anomalous flow behavior, i.e., nonreciprocal

hydrodynamic response.

In the case of a point force and a force dipole, the symmetry of the velocity

field in terms of the force direction is broken, generating flow perpendicular to

the applied force (see Figs. 5.2 and 5.3). We also analyzed the effects of the

odd viscosity on the mobility tensor, as derived in Eq. (5.19). In particular,

we investigated the behavior of the anti-symmetric mobility coefficient Gxy that

exists only for nonvanishing ηo, as shown in Eq. (5.22). As for the hydrody-

namic response of finite-size bodies, we have investigated the forces acting on

a translating and rotating disk in a 2D fluid layer, using the boundary integral

equation (5.24). We found that small disks (κR ) 1) not only undergo a drag

force, but also a lift force, which cannot be seen in an isotropic passive fluid (see

Fig. 5.5) [5.1].

As a possible biological application, we can relate the 2D fluid layer to

a monolayer with a low concentration of active motor proteins, such as ion

pumps [5.33]. Rheological properties of these system can be investigated by sur-

face microrheology techniques [5.34]. For typical values such as η ≈ 10−3 Pa·s,

ηs ≈ 10−6 Pa·s·m, and h ≈ 1 nm, we find that the obtained drag and lift

forces could be observed in experiments using a sub-micrometer probe, i.e.,

R < 0.1µm.

In this paper, we have considered a 2D compressible fluid, which is in contact
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with a 3D bulk fluid. Such a compressible 2D system can be realized by a dilute

Gibbs monolayer, which is composed of soluble amphiphiles that can dissolve

into the underlying bulk fluid [5.15, 5.16]. When the adsorption and desorp-

tion processes of soluble amphiphiles are instantaneous, surface concentration

gradients can be eliminated rapidly. This is the situation that we consider in

the present work. When the amphiphile is insoluble, on the other hand, the

concentration gradient is sustained, giving rise to a Marangoni flow [5.17, 5.35].

Although the Marangoni convection is outside the scope of this paper, it would

be interesting to investigate the effects of odd viscosity on such convective phe-

nomena.

In general, odd viscosity can depend on the density of self-spinning objects,

although such an effect was not considered in the present work. By using the

2D Faxén laws, effective shear viscosity of a fluid membrane with finite-size

suspensions was derived [5.22, 5.23]. Hence, it is of interest to see how the

nonreciprocal flow field of the 2D fluid with an odd viscosity ηo changes with

the rotor concentration. Moreover, for a passive fluid at equilibrium, the disk

drag coefficient is connected to its diffusion constant through Einstein’s relation.

However, such an evident relation does not exist in active chiral fluids and one

has to extend the fluctuation dissipation theorem [5.36–5.39]. These interesting

questions are left for future investigations.

Appendix 5.A Derivation of Eq. (5.15)

We derive the mobility tensor in Fourier space G[k] as given by Eq. (5.15).

The Fourier transform of v(r) is defined by

v(r) =

∫
d2k

(2π)2
v[k] exp(ik · r), (5.A1)

with k = (kx, ky), and similarly for the 3D pressure p(r) and the force density

F(r). In the Fourier space, Eq. (5.11) becomes

− ηsk
2v[k]− ηdk

2k̂k̂ · v[k]− ηok
2(k̂k̄ · v[k]− k̄k̂ · v[k])
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− ih

2
kp[k]k̂− η

h
v[k] + F[k] = 0, (5.A2)

or equivalently

−ηsk2v[k]− ηdk
2v‖[k]k̂− ηok

2(v⊥[k]k̂− v‖[k]k̄)−
ih

2
kp[k]k̂− η

h
v[k] + F[k] = 0,

(5.A3)

where v‖[k] = k̂ · v[k] and v⊥[k] = k̄ · v[k]. For Eq. (5.12), we have

ikk̂ · v[k] = ikv‖[k] = −h2

6η
k2p[k]. (5.A4)

In the derivation of Eq. (5.A2), we have assumed that the 2D fluid layer is quickly

equilibrated with the 3D bulk, and hence the 2D pressure is homogeneous in

space, i.e., ∇Π = 0 [5.15, 5.17].

Substituting Eq. (5.A4) into Eq. (5.A2) to eliminate p[k], we obtain

−ηsk2v[k]− ηdk
2v‖[k]k̂− ηok

2(v⊥[k]k̂− v‖[k]k̄)−
3η

h
v‖[k]k̂− η

h
v[k] + F[k] = 0.

(5.A5)

Hence, F[k] can be written as


F‖[k]

F⊥[k]



 =



(ηs + ηd)k2 + 4η/h ηok2

−ηok2 ηsk2 + η/h







v‖[k]

v⊥[k]



 . (5.A6)

Since the mobility tensor in the Fourier space satisfies the relation v[k] = G[k] ·

F[k], we obtain Eq. (5.15).

Appendix 5.B Derivation of Eq. (5.19) and G0(r)

Here we perform the inverse Fourier transform of G[k] in Eq. (5.15) to obtain

G(r). By calculating Gii, Gij r̂ir̂j, and Gijεij, we obtain [5.27]

2C1 + C2 =

∫
d2k

(2π)2
ηs(k2 + κ2) + (ηs + ηd)(k2 + λ2)

ηs(ηs + ηd)(k2 + κ2)(k2 + λ2) + η2ok
4
exp(ik · r)

=
1

2π

∫ ∞

0

dk k
ηs(k2 + κ2) + (ηs + ηd)(k2 + λ2)

ηs(ηs + ηd)(k2 + κ2)(k2 + λ2) + η2ok
4
J0(kr), (5.B1)

C1 + C2 =

∫
d2k

(2π)2
ηs(k2 + κ2) cos2 θ + (ηs + ηd)(k2 + λ2)(1− cos2 θ)

ηs(ηs + ηd)(k2 + κ2)(k2 + λ2) + η2ok
4

exp(ik · r)
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=
1

2π

∫ ∞

0

dk k
ηs(k2 + κ2)[J0(kr)− J1(kr)/(kr)] + (ηs + ηd)(k2 + λ2)J1(kr)/(kr)

ηs(ηs + ηd)(k2 + κ2)(k2 + λ2) + η2ok
4

,

(5.B2)

C3 = −
∫

d2k

(2π)2
ηok2

ηs(ηs + ηd)(k2 + κ2)(k2 + λ2) + η2ok
4
exp(ik · r)

= − ηo
2π

∫ ∞

0

dk
k3J0(kr)

ηs(ηs + ηd)(k2 + κ2)(k2 + λ2) + η2ok
4
, (5.B3)

respectively, where θ is the angle between the vectors k and r. Solving Eqs. (5.B1)

and (5.B2) when κ = λ, we obtain Eqs. (5.20), (5.21), and (5.22).

Next, we analytically derive the mobility tensor G0(r) in the absence of the

odd viscosity, i.e., µ = 0. In this case, we have from Eq. (5.15)

G0
ij[k] =

δij − k̂ik̂j
ηs(k2 + κ2)

+
k̂ik̂j

(ηs + ηd)(k2 + λ2)
. (5.B4)

The real-space mobility tensor G0(r) can be obtained by assuming

G0
ij(r) = B1(r)δij +B2(r)r̂ir̂j, (5.B5)

with two coefficients B1 and B2.

By calculating G0
ii and G0

ij r̂ir̂j, we have

2B1 +B2 =
1

2π

∫ ∞

0

dk

[
k

ηs(k2 + κ2)
+

k

(ηs + ηd)(k2 + λ2)

]
J0(kr)

=
1

2πηs
K0(κr) +

1

2π(ηs + ηd)
K0(λr), (5.B6)

B1 +B2 =
1

2π

∫ ∞

0

dk

[
J1(kr)

ηsr(k2 + κ2)
+

k

(ηs + ηd)(k2 + λ2)

(
J0(kr)−

J1(kr)

kr

)]

=
1

2πηs

[
−K1(κr)

κr
+

1

(κr)2

]
+

1

2π(ηs + ηd)

[
K0(λr) +

K1(λr)

λr
− 1

(λr)2

]
.

(5.B7)

Solving Eqs. (5.B6) and (5.B7), we obtain

B1(r) =
1

2πηs

[
K0(κr) +

K1(κr)

κr
− 1

(κr)2

]
+

1

2π(ηs + ηd)

[
−K1(λr)

λr
+

1

(λr)2

]
,

(5.B8)

B2(r) =
1

2πηs

[
−K0(κr)−

2K1(κr)

κr
+

2

(κr)2

]
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+
1

2π(ηs + ηd)

[
K0(λr) +

2K1(λr)

λr
− 2

(λr)2

]
. (5.B9)

Appendix 5.C Generalized Lorentz reciprocal

theorem

The Lorentz reciprocal theorem gives a relation regarding the resistance of

finite-size bodies moving in a passive fluid [5.31, 5.32]. Here we generalize this

theorem for a 2D compressible fluid with finite odd viscosity. Let unprimed

and primed symbols represent the variables for any two arbitrary types of flows

satisfying the following equations

∂jσij + bi = 0, ∂jσ
′
ij + b′i = 0, (5.C1)

where b and b′ are the arbitrary body force densities and the associated velocity

fields are given by v and v′, respectively. In the above, σij is the stress tensor

in Eq. (6.3) that also includes the 2D isotropic pressure term, −Πδij (similarly

for σ′
ij). The divergence of σ′

ijvj − σijv′j becomes [5.40]

∂i[(σ
′
S,ij + σ′

A,ij)vj]− ∂i
[
(σS,ij − σA,ij)v

′
j

]

= v′jbj − vjb
′
j − Π′∂jvj + Π∂jv

′
j + 2v′j∂iσA,ij, (5.C2)

where

σS,ij = −Πδij + (ηd − ηs)δij∂kvk + ηs(∂jvi + ∂ivj),

σA,ij =
1

2
ηo

(
∂jv

∗
i + ∂iv

∗
j + ∂∗j vi + ∂∗i vj

)
,

(5.C3)

with σij = σS,ij +σA,ij. Integrating the above equation over the fluid area A, we

obtain the integral identity as
∫

C

ds ni(σ
′
S,ij + σ′

A,ij)vj −
∫

C

ds ni(σS,ij − σA,ij)v
′
j

= −
∫

A

dAv′jbj +

∫

A

dAvjb
′
j +

∫

A

dAΠ′∂jvj −
∫

A

dAΠ∂jv
′
j − 2

∫

A

dAv′j∂iσA,ij,

(5.C4)

where C denotes the curve bounding the area A and the unit vector n is directed

into that area. We note that Eq. (5.C4) is not invariant under the exchange of
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the unprimed and primed variables when ηo (= 0. When ηo = 0, on the other

hand, Eq. (5.C4) reduces to the Lorentz reciprocal theorem for a 2D compressible

fluid [5.40].

Appendix 5.D Derivation of Eq. (5.24)

Here we derive the boundary integral equation in Eq. (5.24). When Π =

Π′ = 0, we consider the following two types of unprimed and primed flows

∂jσij = 0, ∂jσ
′
ij + F ′

iδ(R−R′) = 0. (5.D1)

Suppose that a circular rigid disk is moving in the fluid area A, Eq. (5.C4) with

the use of Eq. (5.D1) becomes [5.30, 5.31]
∫

Cd

ds(R)ni(σS,ij − σA,ij)v
′
j =

∫

Cd

ds(R)ni(σ
′
S,ij + σ′

A,ij)vj

− F ′
j

∫

A

dA(R) vjδ(R−R′), (5.D2)

where Cd is the circular curve bounding the moving disk, as schematically de-

picted in Fig. 5.7. The notations, ds(R) and dA(R), indicate that R is the

integration variable. Assuming a nonslip boundary condition at the disk perime-

ter and using the form of the point-force solution, v′i(R) = Gij(R −R′)F ′
j , we

obtain [5.31]
∫

A

dA(R) v!(R)δ(R−R′) = −
∫

Cu

ds(R) fj(R)Gj!(R−R′), (5.D3)

where Cu denotes the domain of the unknown force distribution, f , and we have

assumed that the force distribution can be defined as fj = ni(σS,ij − σA,ij).

Interchanging R and R′, we finally obtain Eq. (5.24).

Appendix 5.E Derivation of Eqs. (5.26) and (5.27)

We derive the translational friction tensor Γ and the rotational friction coef-

ficient Λ in Eqs. (5.26) and (5.27), respectively. If we assume |R′| ) |R| [5.22],

the right-hand-side of Eq. (5.24) can be expanded up to first order in R′ as

Ui + εijkΩjRk ≈ −
∫

Cu

ds(R′) fj (R
′)

[
Gji(R)−R′

k

∂Gji(R)

∂Rk

]
. (5.E1)
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Figure 5.7: Sketch of the circular curve, Cd, and the unspecified curve, Cu,
with the accompanying unknown force distribution, f , while A is the fluid area
bounded by both Cd and Cu (white area). The curves, Cd and Cu, are param-
eterized by the vectors R and R′, respectively and the two arrows represent
the direction of the line integral. In the sketch, we have |R′| > |R| only for
presentation purposes. In actual calculations where the condition |R′| ) |R| is
used, the two curves overlap with each other.

Integrating Eq. (5.E1) over the circular disk perimeter, Cd, parametrized by R,

we obtain the relation between the velocity and the force as

Ui = − 1

2πR

∫

Cu

ds(R′) fj(R
′)

∫

Cd

ds(R)Gji(R) = −[(C1 + C2/2)δij − C3εij]F
d
j ,

(5.E2)

where F d
i =

∫
Cu

ds(R′) fi(R′) is the force acting on the disk. In the above, the

integrals of the odd terms in R vanish because of the symmetry of the disk.

Hence, we obtain Eq. (5.26).

Next, we multiply both sides of Eq. (5.E1) by R and integrate over Cd

πR3ε!ijΩj =

∫

Cu

ds(R′)R′
kfj (R

′)

∫

Cd

ds(R)R!
∂Gji(R)

∂Rk
. (5.E3)

We further multiply both sides of the above equation by ε!in and obtain

Ωn =
1

2R

[(
∂C1

∂R
− C2

R

)
εnkj −

∂C3

∂R
εnkiεij

] ∫

Cu

ds(R′)R′
kfj (R

′) . (5.E4)

On the right-hand-side, the term with C3 represents the radial pressure acting

on the disk [5.1]. As this term does not contribute to the torque, it vanishes and

the relation between the angular velocity and the torque becomes

Ω =
1

2R

(
∂C1

∂R
− C2

R

)
Td, (5.E5)

where T d
i = εijk

∫
Cu

ds(R′)R′
jfk (R

′) is the torque on the disk. Hence, we obtain
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Eq. (5.27).
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Chapter 6

Hydrodynamic Lift of a

Two-Dimensional Liquid Domain

with Odd Viscosity †

6.1 Introduction

Biological membranes play an important role in various life-sustaining pro-

cesses such as the transportation of materials or the reaction between chemi-

cal species, which are essential for cellular metabolism and homeostasis [6.1].

Biomembranes are composed of two layers of lipid molecules, cholesterol, and

various types of proteins that can move laterally due to the membrane fluid-

ity [6.2]. Since lipid bilayers are extremely thin, as compared to their lateral

size, they have been modeled as two-dimensional (2D) fluids, and their trans-

port properties have been investigated both theoretically and experimentally.

For instance, the drag coefficient of a disk-like domain (protein) moving in a

2D fluid sheet has been studied for various membrane geometries [6.3–6.6]. Us-

ing fluorescence correlation spectroscopy, Ramadurai et al. measured the lateral

mobility of proteins in lipid bilayers and confirmed a logarithmic dependence of

†The material presented in this chapter was published: Y. Hosaka, S. Komura, and D.
Andelman, Phys. Rev. E 104, 064613 (2021).
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the mobility on the protein size in agreement with predictions [6.7].

In an actual biological environment, the presence of active protein molecules

plays an important role because they induce nonequilibrium hydrodynamic ef-

fects to the surrounding fluid [6.8–6.11]. For example, there are active rotating

proteins such as ion pumps, that allow materials to pass through the mem-

brane [6.12, 6.13]. Their inherent nonequilibrium nature due to continuous

energy consumption violates the time-reversal symmetry and drives the mem-

brane into out-of-equilibrium situations [6.14]. In addition, rotating proteins

further break the parity symmetry because of their unidirectional motion, so

that the membrane with autonomous rotors can be viewed as an active chiral

system [6.15–6.18]. Moreover, active proteins are often inhomogeneously dis-

tributed in the membrane to form active protein-rich domains that are called

lipid rafts [6.19–6.21]. Due to the presence of such condensed active rotor pro-

teins, biomembranes can be regarded as a heterogeneous active chiral fluid rather

than just a uniform and passive 2D fluid.

Active chiral fluids are generally characterized by a peculiar rheological prop-

erty called odd viscosity [6.22], which accounts for the fluid flow perpendicular to

the velocity gradient and does not contribute to energy dissipation. It is known

that odd viscosity gives rise to anomalous hydrodynamic phenomena such as

surface waves [6.23] or topological edge modes [6.24–6.26] at fluid boundaries.

Furthermore, it leads to an instability of a viscous film [6.27, 6.28] and asym-

metric mobility [6.29]. In an incompressible fluid, however, the odd viscosity can

be absorbed into the hydrostatic pressure term [6.17, 6.22] and does not affect

the flow profile [6.30, 6.31]. To clearly see the odd viscosity effect, one should

include either the violation of the incompressibility condition or the appropriate

boundaries in 2D fluids [6.29, 6.30].

To reveal the odd viscosity effect, the hydrodynamic forces acting on various

objects have been studied in the presence of odd viscosity [6.29–6.32]. For a

laterally moving rigid disk, it was found that odd viscosity causes a hydrody-
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namic lift force for a compressible 2D fluid [6.29]. Moreover, odd viscosity is

responsible for the torque acting on objects with time-varying area such as an

expanding bubble with a no-stress boundary condition [6.30–6.32]. From the

experimental point of view, odd viscosity was measured for a fluid consisting of

self-spinning particles [6.33, 6.34]. Although odd viscosity may exist in biologi-

cal systems [6.17, 6.35], hydrodynamic responses in heterogeneous active chiral

fluids have not been discussed and the role of odd viscosity in biomembranes

remains largely unexplored.

In this paper, we discuss the hydrodynamic forces acting on a circular liquid

domain that moves laterally in a supported membrane in the presence of odd

viscosity [6.22]. To investigate active heterogeneous structures relevant to lipid

rafts in biomembranes, we consider a situation where the odd viscosity is differ-

ent between the inside and outside of the liquid domain. Taking into account

the momentum leakage from the 2D fluid to the underlying substrate [6.6, 6.36–

6.41], we analytically obtain the velocity field induced by the domain motion

and discuss its dependence on the odd viscosity difference. We then calculate

the drag and lift forces acting on a moving liquid domain. We show that a dis-

sipationless lift force acting on the domain emerges when only the odd viscosity

difference is present, while it vanishes when the odd viscosity is uniform in space.

We further obtain various limiting expressions of the drag and lift coefficients for

small and large domain sizes, which deviate from those obtained for the passive

case [6.6].

In the next section, we introduce the hydrodynamic equations for a 2D active

chiral fluid with momentum decay and show a general solution in the presence

of odd viscosity. In Sec. 6.3, we obtain the velocity field and stress tensor needed

to investigate the flow profile induced by the domain motion. In Sec. 6.4, we

calculate the hydrodynamic drag and lift forces acting on the liquid domain and

examine their limiting expressions, by changing either the domain size or odd

viscosity difference. A summary and further discussion are given in Sec. 6.5.
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Figure 6.1: Schematic drawing of a fluid membrane (blue), which is flat, thin,
incompressible, and supported by a rigid substrate (brown). The membrane
has a 2D even (shear) viscosity η, odd viscosity ηo, and friction parameter λ.
A circular liquid domain (yellow) of radius R has a 2D even (shear) viscosity
η′, odd viscosity η′o, and friction parameter λ′. The odd viscosity reflects the
presence of active rotor proteins (green) within the membrane that accumulate
inside the liquid domain. Hence, in general, ηo can be different from η′o. The
liquid domain that moves laterally with a velocity U = (−U, 0) experiences a
hydrodynamic force F = (Fx, Fy), where Fx and Fy are the drag and lateral lift
forces, respectively.

6.2 Two-dimensional hydrodynamic equations

with momentum decay

Biological membranes are formed as condensed lipid molecules with very

small area compressibility [6.42] and they have been modeled as incompress-

ible fluids [6.3–6.5]. For an incompressible 2D fluid in which momentum is

strictly conserved, one cannot obtain a linear relation between the velocity and

viscous force acting on an embedded object. This is the well-known Stokes’

paradox [6.43, 6.44]. One way to circumvent this problem is to introduce a mo-

mentum decay mechanism in the 2D fluid [6.5, 6.6]. Such a momentum leakage

occurs, for example, due to the friction between the supported membrane and

the underlying rigid substrate [6.45], as shown in Fig. 6.1.

Let us denote any 2D vector by r = (x, y) and the 2D velocity by v(r). The

steady-state linearized hydrodynamic equation for an active chiral fluid in the

low Reynolds number limit can be written as [6.6, 6.36–6.41]

∇ · σ − λv = 0. (6.1)
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Here, ∇ = (∂x, ∂y) stands for the 2D gradient operator, σ is the 2D fluid stress

tensor as given below in Eq. (6.3), and λ is the friction parameter accounting for

the momentum decay (see also Sec. 6.5 later for an estimate of λ). In addition,

we assume that the 2D fluid is incompressible satisfying the condition:

∇ · v = 0. (6.2)

The Stokes’ paradox can be eliminated in the presence of the momentum decay

mechanism, and one can consistently solve the above hydrodynamic equations

under appropriate boundary conditions.

For an incompressible 2D fluid with odd viscosity, the stress tensor is given

by [6.17, 6.29, 6.46]

σij = −pδij + η (∂jvi + ∂ivj) +
1

2
ηo

(
∂jv

∗
i + ∂iv

∗
j + ∂∗j vi + ∂∗i vj

)
, (6.3)

where p is the 2D hydrostatic pressure with δij being the Kronecker delta, η and

ηo are the 2D even (shear) and odd viscosities, respectively, and v∗i = εijvj and

∂∗i = εij∂j with εij being the 2D Levi-Civita antisymmetric tensor (εxx = εyy = 0

and εxy = −εyx = 1). Hence, the vector v∗ is obtained by rotating v by π/2 in

a clockwise direction.

In our work, we do not specify the microscopic origin of odd viscosity, but it

can be attributed, for example, to self-spinning objects representing active rotor

proteins [6.17, 6.35]. Their continuous energy consumption and autonomous

rotation break both time-reversal and parity symmetries, giving rise to odd

viscosity in a 2D fluid with active rotor proteins. Although even viscosity η is

always positive, odd viscosity ηo can be either positive or negative depending on

the protein rotational direction. Substituting Eq. (6.3) into Eq. (6.1), we obtain

the 2D hydrodynamic equation as

−∇p+ η∇2v + ηo∇2v∗ − λv = 0, (6.4)

together with the incompressibility condition of Eq. (6.2).

Within an infinitely extended 2D fluid characterized by η, ηo, and λ, we
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consider now a circular liquid domain of radius R having a 2D even (shear)

viscosity η′ and friction parameter λ′ [6.6], as schematically presented in Fig. 6.1.

Moreover, we assume that the fluid inside the domain has an odd viscosity η′o

that can be different from ηo. The difference in the odd viscosities, ηo (= η′o,

reflects the fact that active rotor proteins can accumulate and have a denser

concentration in the liquid domain [6.19]. In general, both ηo and η′o can be

either positive or negative. Notice that the domain perimeter is assumed to be

impermeable, so that the fluids inside and outside the domain do not mix with

each other [6.6]. In addition, we assume that the deformation of the circular

liquid domain can be neglected. This is justified when the line tension at the

domain boundary is large enough compared to the viscous force [6.6, 6.44].

Throughout this work, we adopt the notation convention that quantities

with prime refer to those inside the domain, while quantities without prime cor-

respond to those outside the domain. Any 2D fluid velocity can be expressed

as the sum of a gradient of a scalar potential φ and a curl of a vector poten-

tial A = (0, 0, A), where the z-component, A, corresponds to the stream func-

tion [6.6, 6.43]. Then, the 2D velocities outside/inside the domain are expressed

as

v = −∇φ+∇×A, v′ = −∇φ′ +∇×A′. (6.5)

Substituting Eq. (6.5) into Eq. (6.2), we obtain

∇2φ = 0, ∇2φ′ = 0, (6.6)

which are the 2D Laplace equations.

One can also show that Eq. (6.4) is satisfied if the outside/inside pressures

are given by

p = ηκ2φ− ηoκ
2A, p′ = η′κ′2φ′ − η′oκ

′2A′, (6.7)

while A and A′ obey the 2D Helmholtz equations:

(∇2 − κ2)A = 0, (∇2 − κ′2)A′ = 0. (6.8)
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Here, we have defined the inverse hydrodynamic screening lengths for the out-

side/inside fluids as κ = (λ/η)1/2 and κ′ = (λ′/η′)1/2. As seen in Eq. (6.7),

the effect of odd viscosity can be taken into account through the modified pres-

sure [6.17, 6.22, 6.30, 6.32], reflecting the fact that the odd viscosity does not

contribute to the dissipation. In the next section, we shall derive the solutions

to Eqs. (6.6) and (6.8) under the appropriate boundary conditions for a laterally

moving liquid domain.

6.3 The velocity field of a moving liquid domain

6.3.1 Velocity and stress tensor

For convenience, we use the 2D polar coordinates (r, θ) defined by x = r cos θ

and y = r sin θ with the origin fixed at the domain center. First, we consider

the region outside the domain (r > R). Under the condition that the velocity

and pressure vanish at large distances r → ∞, we write down the solutions to

Eqs. (6.6) and (6.8) as follows:

φ =
C1

r
cos θ +

C3

r
sin θ, (6.9)

A = C2K1(κr) sin θ + C4K1(κr) cos θ. (6.10)

Here, C1, · · · , C4 are unknown coefficients that will be determined from the

boundary conditions, and K1(z) is the first-order modified Bessel function of

the second kind [6.47].

From Eq. (6.5), the radial and tangential components of the velocity for

r > R are given by

vr =

[
C3

r2
− C4

r
K1(κr)

]
sin θ +

[
C1

r2
+

C2

r
K1(κr)

]
cos θ, (6.11)

and

vθ =

[
C1

r2
+ C2κK0(κr) +

C2

r
K1(κr)

]
sin θ

+

[
−C3

r2
+ C4κK0(κr) +

C4

r
K1(κr)

]
cos θ, (6.12)
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respectively. Then, with the use of Eq. (6.3), the two components of the stress

tensor can be obtained as

σrr = −
[
η

(
4C3

r3
+

C3κ2

r
− 2C4κ

r
K2(κr)

)

+ηo

(
4C1

r3
+

2C2κ

r
K2(κr)

)]
sin θ

−
[
η

(
4C1

r3
+

C1κ2

r
+

2C2κ

r
K2(κr)

)

+ηo

(
−4C3

r3
+

2C4κ

r
K2(κr)

)]
cos θ, (6.13)

and

σrθ = −
[
η

(
4C1

r3
+ C2κ

2K1(κr) +
2C2κ

r
K2(κr)

)

+ηo

(
−4C3

r3
+

2C4κ

r
K2(κr)

)]
sin θ

−
[
η

(
−4C3

r3
+

2C4κ

r
K2(κr) + C4κ

2K1(κr)

)

+ηo

(
−4C1

r3
− 2C2κ

r
K2(κr)

)]
cos θ. (6.14)

Inside the domain (r < R), on the other hand, the solutions to Eqs. (6.6)

and (6.8) under the condition that they are finite at the origin (r = 0) are given

by

φ′ = C ′
1r cos θ + C ′

3r sin θ, (6.15)

A′ = C ′
2I1 (κ

′r) sin θ + C ′
4I1 (κ

′r) cos θ. (6.16)

Here, C ′
1, · · · , C ′

4 are the other unknown coefficients, and I1(z) is the first-order

modified Bessel function of the first kind [6.47]. Although the general solutions

to Eqs. (6.6) and (6.8) for φ,φ′, A, and A′ can be expressed as a series expansion

in terms of r and θ, we have kept only the smallest number of terms satisfying

the boundary conditions that will be discussed in the next subsection.

Then, the corresponding radial and tangential components of the velocity for

r < R become

v′r =

[
−C ′

3 −
C ′

4

r
I1(κ

′r)

]
sin θ −

[
C ′

1 −
C ′

2

r
I1(κ

′r)

]
cos θ, (6.17)
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and

v′θ =

[
C ′

1 − C ′
2κ

′I0(κ
′r) +

C ′
2

r
I1(κ

′r)

]
sin θ

+

[
−C ′

3 − C ′
4κ

′I0(κ
′r) +

C ′
4

r
I1(κ

′r)

]
cos θ, (6.18)

respectively, and the two components of the stress tensor are given by

σ′
rr = −

[
η′
(
C ′

3κ
′2r +

2C ′
4κ

′

r
I2(κ

′r)

)
− η′o

2C ′
2κ

′

r
I2(κ

′r)

]
sin θ

−
[
η′
(
C ′

1κ
′2r − 2C ′

2κ
′

r
I2(κ

′r)

)
− η′o

2C ′
4κ

′

r
I2(κ

′r)

]
cos θ, (6.19)

and

σ′
rθ = −

[
η′C ′

2

(
κ′2I1(κ

′r)− 2κ′

r
I0(κ

′r) +
4

r2
I1(κ

′r)

)

+η′oC
′
4

(
−2κ′

r
I0(κ

′r) +
4

r2
I1(κ

′r)

)]
sin θ

−
[
η′C ′

4

(
−2κ′

r
I0(κ

′r) + κ′2I1(κ
′r) +

4

r2
I1(κ

′r)

)

+η′oC
′
2

(
2κ′

r
I0(κ

′r)− 4

r2
I1(κ

′r)

)]
cos θ. (6.20)

These velocities and stress tensor components for the inside and outside of the

domain should be connected through the appropriate boundary conditions at

the domain perimeter.

6.3.2 Boundary conditions at the liquid domain perime-

ter

As mentioned in the previous section, we consider the situation in which the

liquid domain is laterally moving with a constant velocity U = (−U, 0). At

r = R, the radial component of the fluid velocity should be equal to the domain

velocity, while the tangential components of the fluid velocity and the stress

tensor should be continuous [6.6, 6.44]. These conditions are written as

vr = −U cos θ, (6.21)

v′r = −U cos θ, (6.22)

vθ = v′θ, (6.23)
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σrθ = σ′
rθ. (6.24)

Since we consider the circular liquid domain without deformation, there ex-

ists a finite line tension at the domain boundary, which dominates over a vis-

cous force. The line tension gives rise to the 2D Laplace pressure at the domain

perimeter, so that the normal stress condition inside and outside the domain

is automatically satisfied [6.6, 6.44]. Hence, one does not need the condition,

σrr = σ′
rr, in addition to Eqs. (6.21)-(6.24). Using the above boundary condi-

tions, we can determine the eight coefficients C1, · · · , C4, C ′
1, · · · , C ′

4, whose ex-

plicit expressions are provided in Appendix 6.A. Since each of Eqs. (6.21)-(6.24)

includes both sin θ and cos θ that are orthogonal to each other, one boundary

condition provides two constraints. Therefore, the four boundary conditions

lead to eight constraints that are sufficient to determine the eight unknown

coefficients.

Notice that for the passive case without odd viscosity (ηo = η′o = 0), the

coefficients, C3, C4, C ′
3, and C ′

4, in Eqs. (6.9), (6.10), (6.15), and (6.16) are not

required to satisfy the boundary conditions of Eqs. (6.21)-(6.24) [6.6]. This is

because the odd viscosity contributes to the fluid stress perpendicular to the

velocity gradient, as can be recognized in Eq. (6.3). More details on the passive

case will be summarized in Appendix 6.B.

6.3.3 Flow profile

Having fixed all the coefficients in Eqs. (6.11), (6.12), (6.17), and (6.18), we

next investigate the fluid flow induced by the lateral translational motion of the

liquid domain. For simplicity, we assume η = η′ and λ = λ′ (or equivalently

κ = κ′). In Fig. 6.2, the velocity field v − U is plotted for (a) ηo = η′o = η

(uniform odd viscosity), (b) ηo = η and η′o = 0 (vanishing odd viscosity inside the

domain), and (c) ηo = 0 and η′o = η (vanishing odd viscosity outside the domain).

In Fig. 6.3, we also plot v −U for (a) ηo = −η′o = η and (b) −ηo = η′o = η. In

these plots, the domain size is fixed to κR = 0.1 (circular black line).
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Figure 6.2: Streamlines (black arrows) of the fluid velocity, v−U, as a function
of κx and κy when (a) ηo = η′o = η (uniform odd viscosity), (b) ηo = η and
η′o = 0 (vanishing odd viscosity inside the domain), and (c) ηo = 0 and η′o = η
(vanishing odd viscosity outside the domain) [see Eqs. (6.11), (6.12), (6.17), and
(6.18)]. The green (light gray) region represents fluids with nonvanishing odd
viscosity, while the white region represents vanishing odd viscosity. We also
have chosen η = η′, λ = λ′, and ε = κR = 0.1. The domain moves laterally in
the negative x-direction with a velocity U = (−U, 0). The circular black line
represents the domain perimeter.

When the odd viscosity is spatially uniform (ηo = η′o), as in Fig. 6.2(a), we

see that the flow streamlines induced by the domain motion are symmetric with

respect to the direction of motion. Such a symmetric profile is also seen for the

passive case in which odd viscosity does not exist [6.6]. When ηo (= η′o, as in

Figs. 6.2(b) and 6.2(c), the flow inside the domain is rotated with respect to the

x-axis and the above symmetry breaks down. When ηo/η′o < 0, as in Fig. 6.3, the

flow inside the domain is more rotated compared to Figs. 6.2(b) and 6.2(c). This

implies that the negative odd viscosity enhances the rotation in the flow field.

Figure 6.2(c) is relevant to a lipid domain enriched with active rotor proteins,

while Fig. 6.3 represents active proteins rotating oppositely inside and outside

the domain. In the next section, we show that such a flow-field asymmetry leads

to a lateral lift force acting on the domain.
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Figure 6.3: Streamlines (black arrows) of the fluid velocity, v−U, as a function
of κx and κy when (a) ηo = −η′o = η and (b) −ηo = η′o = η [see the caption of
Fig. 6.2 for the other conditions]. The green (light gray) region represents fluids
with positive odd viscosity, while the blue (gray) region represents negative odd
viscosity.

6.4 Hydrodynamic forces acting on a moving

liquid domain

6.4.1 Drag and lift forces

For a liquid domain laterally moving with a velocity U = (−U, 0), the forces

acting in the x- and y- directions, F = (Fx, Fy), are given by [6.6, 6.44]

Fx = R

∫ 2π

0

dθ (σrr cos θ − σrθ sin θ) = πη(κR)2
[
−C1

R2
+

C2K1(κR)

R

]
, (6.25)

and

Fy = R

∫ 2π

0

dθ (σrr sin θ + σrθ cos θ) = −πη(κR)2
[
C3

R2
+

C4K1(κR)

R

]
, (6.26)

respectively. In the above, the already determined coefficients C1, · · · , C4 are

substituted as given in Appendix 6.A. In addition, the full expressions of Fx

and Fy are also given in Appendix 6.A.

For the sake of simplicity, we consider as before the case η = η′ and λ = λ′

(or equivalently κ = κ′) in Eqs. (6.25) and (6.26). We introduce a dimensionless

domain radius, ε ≡ κR, and the arguments of the modified Bessel functions are

omitted as in Kn = Kn(ε) and In = In(ε) to keep the notations more compact.

Then, the expressions for the drag coefficient Γ‖ = Fx/U and the lateral lift
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Figure 6.4: Plots of (a) the rescaled drag coefficient Γ‖ and (b) the rescaled lift
coefficient Γ⊥ as a function of the rescaled domain radius ε = κR for various
values of the odd viscosity difference δ = (ηo − η′o)/η. In (a), δ = 0.1 and
10 are presented by the solid black and dotted blue lines, respectively. In (b),
δ = 0.1, 1, and 10 are presented by the solid black, dashed red, and dotted blue
lines, respectively.

coefficient Γ⊥ = Fy/U become

Γ‖

4πη
=
ε2

4
+
εK1

K0

[
1− ε2(K0I1 +K1I2)K1I2

ε2(K0I1 +K1I2)2 + 4(δK0I2)2

]
, (6.27)

and

Γ⊥

4πη
=

2δ(εK1I2)2

ε2(K0I1 +K1I2)2 + 4(δK0I2)2
. (6.28)

In the above, we have introduced the dimensionless difference in odd viscosity,

δ, between the inside and outside of the domain

δ =
ηo − η′o
η

. (6.29)
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Equations (6.27) and (6.28) are the main results of our work.

Both the drag Γ‖ and lift Γ⊥ coefficients depend on the odd viscosity differ-

ence δ, and are even and odd functions of δ, respectively. As the domain moves

in the negative x-direction, it exhibits a lateral lift motion along the y > 0 di-

rection when δ > 0, and also along the y < 0 direction for δ < 0. Notice that

the passive case without odd viscosity (ηo = η′o = 0) is recovered by setting

δ = 0 [6.6] [see Eq. (6.B2) in Appendix 6.B for the specific expression]. For the

uniform case with ηo = η′o (= 0 or δ = 0, the drag coefficient Γ‖ reduces to that

of the passive case [6.6], whereas the lift coefficient Γ⊥ vanishes. Since the lift

force does not exist for the passive case [6.3–6.6], the finite lift force reflects not

only the existence of odd viscosity, but also its difference (δ (= 0) between the

inside and outside of the domain.

6.4.2 Dependence on the domain size ε

To discuss the dependence of the drag coefficient Γ‖ and the lateral lift co-

efficient Γ⊥ on the domain size ε for arbitrary δ, it is useful to obtain their

asymptotic expressions in the small and large ε limits. The dependence on δ

will be separately discussed in the next subsection. For ε) 1, they become

Γ‖

4πη
≈ 4[ln(2/ε)− γ + 1/4] + δ2[ln(2/ε)− γ]

4[ln(2/ε)− γ + 1/4]2 + δ2[ln(2/ε)− γ]2
, (6.30)

and

Γ⊥

4πη
≈ δ

8[ln(2/ε)− γ + 1/4]2 + 2δ2[ln(2/ε)− γ]2
, (6.31)

where γ ≈ 0.5772 is Euler’s constant. Hence, both Γ‖ and Γ⊥ depend only

logarithmically on the rescaled domain size ε. In the opposite limit of ε + 1,

the asymptotic expressions become

Γ‖

4πη
≈ ε2

4
, (6.32)

and

Γ⊥

4πη
≈ δ

2
. (6.33)
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Here, Γ‖ is proportional to ε2 and independent of δ, while Γ⊥ is independent of

ε and is determined solely by δ.

In Fig. 6.4, we plot Γ‖ and Γ⊥ of Eqs. (6.27) and (6.28), respectively, as

a function of the rescaled domain size ε = κR for various values of δ. These

plots are consistent with the above asymptotic behaviors of Γ‖ and Γ⊥. We

also see that the crossover between the two limiting cases is reasonably given

for ε ≈ 1. In Fig. 6.4(a), Γ‖ is slightly larger when δ is increased, whereas it

hardly depends on δ for larger ε. In Fig. 6.4(b), we see that the lift coefficient Γ⊥

increases logarithmically for ε) 1, while it becomes independent of the domain

size for ε+ 1.

Let us discuss the physical interpretation of the above limiting behaviors

of Γ‖ and Γ⊥ [6.41, 6.48]. The momentum in the 2D fluid is conserved over

distances smaller than the hydrodynamic screening length, r ) κ−1, and the

stress decays as 1/r due to the momentum conservation. Since the stress scales

as σ ∼ ηv/r, we have v ∼ 1/η [6.48]. This explains the weak (logarithmic) size

dependence of Γ‖ and Γ⊥ in Eqs. (6.30) and (6.31), respectively. For larger length

scales, r + κ−1, the momentum is not conserved, and the only contribution to

the velocity is from mass conservation. In a 2D fluid, a mass monopole (source)

will create a velocity that decays as 1/r [6.48]. Hence, the velocity due to a

mass dipole (source and sink) decays as 1/r2, explaining the scaling Γ‖ ∼ ε2 in

Eq. (6.32). Such a strong size dependence is not observed for Γ⊥ in Eq. (6.33)

as the friction parameter λ does not cause any momentum leakage along the

rotated velocity v∗.

6.4.3 Dependence on the odd viscosity difference δ

Next, we show how Γ‖ and Γ⊥ depend on the odd viscosity difference δ for

arbitrary ε. The asymptotic expressions of Eqs. (6.27) and (6.28) for |δ| ) 1

are

Γ‖

4πη
≈ ε2

4
+

εK1I1
K0I1 +K1I2

, (6.34)
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Figure 6.5: Plots of (a) the rescaled drag coefficient Γ‖ and (b) the rescaled lift
coefficient Γ⊥ as a function of the odd viscosity difference δ = (ηo − η′o)/η for
various values of the rescaled domain radius ε = κR. In both plots, ε = 0.1, 1,
and 10 are presented by the solid black, dashed red, and dotted blue lines,
respectively.

and

Γ⊥

4πη
≈ 2δ

(
K1I2

K0I1 +K1I2

)2

, (6.35)

showing that Γ‖ is independent of δ and Γ⊥ is proportional to only δ. As

mentioned before, Eq. (6.34) coincides with the passive drag coefficient of a

liquid domain [6.6] [see Eq. (6.B2)].

When |δ| + 1, on the other hand, we obtain

Γ‖

4πη
≈ ε2

4
+
εK1

K0
, (6.36)
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and

Γ⊥

4πη
≈ 1

2δ

(
εK1

K0

)2

. (6.37)

Here, Γ‖ is also independent of δ, while Γ⊥ decays as 1/δ. Interestingly, Eq. (6.36)

coincides with the result by Evans and Sackmann for the drag coefficient of a

rigid disk in a passive supported membrane [6.5].

In Fig. 6.5, we plot Γ‖ and Γ⊥ in Eqs. (6.27) and (6.28), respectively, as a

function of the odd viscosity difference δ for various values of ε. As can be seen

in Fig. 6.5(a), Γ‖ is almost independent of δ. However, Fig. 6.5(b) shows that

Γ⊥ changes nonmonotonically, in accordance with Eqs. (6.35) and (6.37). The

maximum of Γ⊥ shifts to higher values of δ as ε is increased.

6.5 Discussion and conclusion

In this paper, we have investigated the hydrodynamic forces acting on a 2D

liquid domain that moves laterally in a supported membrane characterized by an

odd viscosity. We combined the momentum decay mechanism of a 2D fluid [6.6,

6.36–6.41] with the concept of odd viscosity [6.22]. Since active rotor proteins

can accumulate inside the lipid domain, we have focused on the difference in odd

viscosity between the inside and outside of the domain. Taking into account the

momentum decay mechanism of the incompressible 2D fluid, we have analytically

obtained the fluid flow induced by a lateral domain motion. In the presence of

odd viscosity difference, the flow field due to the domain motion is rotated with

respect to its direction, as shown in Fig. 6.2.

Using the obtained flow field, we have calculated the hydrodynamic forces

acting on the moving domain. The resulting drag and lift coefficients are given

in Eqs. (6.27) and (6.28). In contrast to the passive case that does not have an

odd viscosity [6.3–6.6], the existence of a lateral lift force is predicted when the

odd viscosity difference is present. We have discussed in detail the dependence

of the drag coefficient Γ‖ and lift coefficient Γ⊥ on the domain size ε and the odd

viscosity difference δ. The appearance of a finite lift force indicates not only the
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existence of the odd viscosity, but also its asymmetry between the inside and

outside of the domain.

In addition to the asymmetry condition, ηo (= η′o, discussed in this work, we

briefly summarize other conditions for finite lift force in incompressible 2D fluids

with odd viscosity. For a laterally moving rigid disk with a nonslip boundary,

no lift was observed [6.30], while it was reported to exist within the Oseen

approximation [6.49]. For a bubble with a no-stress boundary condition, lift

and torque forces, respectively, emerge for a moving and expanding bubble [6.30–

6.32]. The forces of rigid disks and bubbles are discussed in more detail below.

Since the governing hydrodynamic equations (6.2) and (6.4) are linear in v,

the force F acting on a circular domain can be generally written as

F = −Γ ·U, (6.38)

where Γ is the domain friction tensor and U is the domain velocity in an arbi-

trary direction. Following a similar calculation as before, we find that Γ can be

expressed as

Γij = Γ‖δij − Γ⊥εij, (6.39)

where the coefficients Γ‖ and Γ⊥ are, respectively, given by Eqs. (6.27) and

(6.28) for the simple case (η = η′ and λ = λ′), or Eqs. (6.A4) and (6.A5) for the

general case (η (= η′ and λ (= λ′). When δ = 0, the lift coefficient Γ⊥ vanishes

and the friction tensor satisfies the reciprocal relation Γij = Γji. According to

the Lorentz reciprocal theorem [6.50–6.52], such a reciprocal property is guar-

anteed for an arbitrarily shaped object in a passive fluid. When δ (= 0, the

hydrodynamic response becomes nonreciprocal, i.e., Γij (= Γji, leading to a dis-

sipationless lift force. This is one of the distinctive features of an active chiral

fluid characterized by odd viscosity [6.29].

In Ref. [6.30], it was shown that a lift force does not exist for an object in an

incompressible 2D fluid with odd viscosity when nonslip boundary conditions

are imposed. This is the case when the boundary conditions include only the
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continuity of velocity as we have used in Eqs. (6.21)-(6.23). However, in the

case of a liquid domain, we also have employed the boundary condition for the

stress continuity as in Eq. (6.24). Then, the obtained lift force depends on the

odd viscosity difference δ.

Some numerical estimates of the physical quantities in the model can be

given [6.6]. For a fluid membrane supported by a rigid substrate, the friction

parameter in Eq. (6.1) can be identified as λ = ηw/h, where ηw is the 3D

viscosity of the surrounding water and h is the thickness of a thin layer of

lubricating water between the membrane and the substrate [6.5]. Then, the

hydrodynamic screening length is given by κ−1 = (ηh/ηw)1/2. For typical values

such as h ≈ 10−8m, ηw ≈ 10−3 Pa·s, and η ≈ 10−9 Pa·s·m, we find κ−1 ≈ 10−7m.

Since the size of a lipid domain (raft) is roughly 10 nm–100 nm [6.19, 6.53], the

dimensionless domain size ε = κR is estimated to be 0.1 ≤ ε ≤ 1. Hence,

the limiting expressions derived in Eqs. (6.30) and (6.31) for ε ) 1 are the

appropriate ones for the drag and lift coefficients.

Next we discuss the value of the domain odd viscosity η′o for typical physi-

ological conditions. Consider the situation where disk-like active rotor proteins

concentrate only inside the domain, i.e., ηo = 0 and η′o (= 0, while η = η′ as was

assumed above. In microscopic approaches [6.17, 6.35], it was shown that odd

viscosity is related to the angular-momentum density of rotor proteins through

the relation, η′o 1 IT/ζ. Here, I and T are the moment-of-inertia and torque

densities, respectively, and ζ is the rotational friction coefficient of a rotor.

For an active rotor protein of radius a and mass m driven by the torque τ ,

one can estimate [6.5, 6.34] I = mρ/π, T = ρτ/(πa2), and ζ = η′ρ/π, which

lead to η′o 1 mρτ/(πη′a2). Here, ρ = Nπa2/(πR2) is the area fraction of N

rotors inside the domain. Using typical values such as m ≈ 10−21 kg, ρ ≈ 0.3,

τ ≈ 10−19N·m, and a ≈ 10−8m [6.1, 6.11, 6.15, 6.18] and assuming that the

domain is filled with water (η′ ≈ 10−12 Pa·s·m), we obtain η′o ≈ 10−13 Pa·s·m.

Then, the odd viscosity ratio is given by δ = −η′o/η ≈ −0.1 and the limiting
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expressions of Eqs. (6.34) and (6.35) for |δ| ) 1 can be used here for the drag

and lift coefficients.

As a special case of a liquid domain, we discuss the hydrodynamic forces

acting on a circular bubble of radius R that moves laterally in an incompressible

2D fluid with odd viscosity. In Appendix 6.C, we obtain the drag and lift

coefficients by requiring that η′ = 0 and η′o = 0, while η and ηo for the outside

of the domain are kept finite. For a moving bubble, Γ‖ and Γ⊥ depend on

the viscosity ratio µ = ηo/η. The asymptotic behaviors of the drag and lift

coefficients are similar to those of a liquid domain. In the previous studies, it

was reported that the effect of odd viscosity can be seen as a torque acting on

an expanding bubble [6.30–6.32]. Our results show that the forces due to odd

viscosity exist even for an undeformable object.

In the opposite limit η′ → ∞, the general drag and lift forces in Eqs. (6.A4)

and (6.A5) reduce to those acting on a rigid disk. In this case, the drag coefficient

becomes identical to that for a passive supported membrane [6.5] as in Eq. (6.36),

while the lift coefficient vanishes. This is reasonable because the boundary

conditions at the disk perimeter can be constructed without the stress continuity

of Eq. (6.24) [6.6] and the odd viscosity does not enter in the forces on the

disk [6.30, 6.31].

When the odd viscosity is spatially uniform (δ = 0), it does not affect either

the velocity field or the forces acting on the domain. This implies that the effect

of odd viscosity can be seen in biomembranes when active rotor proteins concen-

trate locally inside specific domains and the odd viscosity becomes nonuniform.

It would be interesting to investigate experimentally the diffusion of such active

domains by using microrheology techniques [6.54]. When a membrane is in ther-

mal equilibrium, the drag coefficient can be connected to the diffusion coefficient

of the liquid domain through Einstein’s relation. In active fluids, however, such

a relation no longer holds and one needs to generalize the fluctuation-dissipation

theorem in the presence of active protein molecules [6.11, 6.55–6.60]. Through
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molecular-dynamics simulations of a particle diffusing in an active chiral fluid,

the applicability of Einstein’s relation was evaluated [6.59]. For the Langevin

equation with odd viscosity, the asymmetric diffusion tensor is obtained, and is

characterized by the ratio of the drag to lift coefficients [6.60]. A more detailed

discussion of such diffusion phenomena in the active chiral fluid will be given

elsewhere [6.60].

Appendix 6.A General drag and lift forces

The coefficients C1, · · · , C4, C ′
1, · · · , C ′

4 are determined by the boundary con-

ditions in Eqs. (6.21)-(6.24) and given by

C1 = −RU (κ′RI0 − 2I1)
[
ηκ2R2K1 + 2(η − η′) (κRK0 + 2K1)

]
D1/(κD)

− η′κ′2R3U (κRK0 + 2K1) I1D1/(κD)−R2UK2D2/D,

C2 = 2U
[
2(η − η′)(κ′RI0 − 2I1) + η′κ′2R2I1

]
D1/(κD) + 2UD2/(κD), (6.A1)

C3 = −4η(ηo − η′o)κ
′2R4UK2

1I
2
2/D,

C4 = −4η(ηo − η′o)κ
′2R3UK1I

2
2/D,

and

C ′
1 = U

[
K0D2 + η2κ2κ′2R4K2

1I0I2

+2ηκRK0K1(κ
′RI0 − I1)

{
2(η − η′)(κ′RI0 − 2I1) + η′κ′2R2I1

}

+
{
2(η − η′)(κ′RI0 − 2I1) + η′κ′2R2I1

}2
K2

0

]
/D,

C ′
2 = 2ηκR2UK1D1/D,

C ′
3 = −4η(ηo − η′o)κκ

′R2UK0K1I1I2/D,

C ′
4 = 4η(ηo − η′o)κκ

′R3UK0K1I2/D,

(6.A2)

where

D = D2
1 +K0D2,

D1 = 2(η − η′)(κ′RI0 − 2I1)K0 + κ′R2 (η′κ′K0I1 + ηκK1I2) ,

D2 = 4(ηo − η′o)
2κ′2R2K0I

2
2 .

(6.A3)
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In the above, we have used the notations Kn = Kn(κR) = Kn(ε) and In =

In(κ′R) = In(ε′). In the main text, we consider the case η = η′ and λ = λ′ (or

equivalently κ = κ′), and the function In(κR) = In(ε) is written as In.

Substituting C1 and C2 into Eq. (6.25) and C3 and C4 into Eq. (6.26), we

obtain the general drag and lift forces as

Fx

4πη
= Uε(δε′I2)

2(εK0 + 4K1)K0/M

+ (Uε/4) [2(ν − 1)K0(2I1 − ε′I0) + ε′ (εK1I2 + νε′K0I1)]

×
[{
νε′2I1 + 2(ν − 1)(2I1 − ε′I0)

}
(εK0 + 4K1)− ε2K1(2I1 − ε′I0)

]
/M,

(6.A4)

and

Fy

4πη
= 2Uδ(εε′K1I2)

2/M, (6.A5)

where ν = η′/η, δ = (ηo − η′o)/η, and

M = [2 (ν − 1)K0 (2I1 − ε′I0) + ε′ (εK1I2 + νε′K0I1)]
2 + 4(δε′K0I2)

2. (6.A6)

When η = η′ and λ = λ′ (or equivalently ν = 1 and ε = ε′), we obtain Eqs. (6.27)

and (6.28).

Appendix 6.B Drag and lift coefficients for a

2D liquid domain when ηo = η′o =

0

We summarize the passive case without odd viscosity, which was studied in

Ref. [6.6]. When ηo = η′o = 0 (while ν (= 1 or η (= η′), the coefficients, C3, C4, C ′
3,

and C ′
4, become zero, as can be seen in Eqs. (6.A1)-(6.A3). Then, the scalar

and vector potentials in Eqs. (6.9), (6.10), (6.15), and (6.16) reduce to

φ =
C1

r
cos θ, A = C2K1(κr) sin θ, φ′ = C ′

1r cos θ, A′ = C ′
2I1 (κ

′r) sin θ,

(6.B1)
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respectively. Calculating the corresponding velocity fields and stress tensors and

applying the boundary conditions of Eqs. (6.21)-(6.24), one can obtain the drag

and lift coefficients as

Γ‖

4πη
=
ε2

4
+

εK1 [ν (4 + ε′2) I1 − 2νε′I0 + 2 (ε′I0 − 2I1)]

νK0 [(4 + ε′2) I1 − 2ε′I0] + (2K0 + εK1) (ε′I0 − 2I1)
, (6.B2)

and Γ⊥ = 0, respectively. When ν = 1 or η = η′, Eq. (6.B2) coincides with the

drag coefficient derived in Eq. (6.34) for |δ| ) 1.

Appendix 6.C Drag and lift coefficients for a

2D bubble

We derive the hydrodynamic forces acting on a moving bubble of radius R.

By setting η′ = 0 and η′o = 0 in Eqs. (6.A4) and (6.A5), we obtain the drag and

lift coefficients as

Γ‖

4πη
=
ε2

4
+

2εK1

2K0 + εK1

[
1 +

2µ2εK0K1

(2K0 + εK1)2 + 4(µK0)2

]
,

Γ⊥

4πη
=

2µ(εK1)2

(2K0 + εK1)2 + 4(µK0)2
,

(6.C1)

with µ = ηo/η. In the limits of ε ) 1 and ε + 1, we obtain respectively for

arbitrary µ

Γ‖

4πη
≈ ln(2/ε)− γ + 1/2 + µ2[ln(2/ε)− γ]

[ln(2/ε)− γ + 1/2]2 + µ2[ln(2/ε)− γ]2
,

Γ⊥

4πη
≈ µ

2[ln(2/ε)− γ + 1/2]2 + 2µ2[ln(2/ε)− γ]2
,

(6.C2)

and

Γ‖

4πη
≈ ε2

4
,

Γ⊥

4πη
≈ 2µ.

(6.C3)
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[6.15] P. Lenz, J.-F. Joanny, F. Jülicher, and J. Prost, Eur. Phys. J. E 13, 379

(2004).

[6.16] S. Fürthauer, M. Strempel, S. W. Grill, and F. Jülicher, Eur. Phys. J. E
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Chapter 7

Concluding Remarks

7.1 Summary of the thesis

In recent years, to better understand the nonequilibrium complex phenomena

observed in living systems, modelings of biological nanomachines have been con-

ducted extensively. Experimental results demonstrate that biological nanoma-

chines or enzymes give rise to nonequilibrium transport phenomena such as

diffusion enhancement, chemotaxis, and substantial change in rheological prop-

erties. Although several theories have been proposed to treat these phenomena,

there has been no unifying theory that quantitatively accounts for the observed

results. Moreover, equilibrium concepts do not hold in living systems and hence

further developments in universal physical properties that characterize the sys-

tems are needed.

In Chap. 1, we have reviewed the general background on biological nanoma-

chines and relevant nonequilibrium phenomena in living systems that include

active transport in living cells, the rheology of the cytoplasm, and emergent

macroscopic behavior in active chiral systems. We then have provided a re-

view of several models of enzymatic molecules and the concept of nonreciprocity

that has attracted much attention recently. In the last part of the chapter, ex-

perimental and theoretical findings related to the peculiar transport coefficient

201
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called odd viscosity have been illustrated.

In Chap. 2, we have discussed statistical properties of a single biological

nanomachine by using the active force dipole model. A dipole, consisting of

two domains connected with an elastic spring of its constant k0 and natural

length $0, exhibits the conformational dynamics, where the enzyme-substrate

complex is characterized by the elastic spring of the constant k1 and natural

length $1. First, we analytically calculated the force dipole magnitude m by

considering the four regimes that are determined by the competition between

the thermal energy kBT and the elastic energies, k0$20 and k1$21. Then, we per-

formed numerical simulations of the Langevin equation where there is no explicit

hydrodynamics and the solvent effects are considered through the viscous fric-

tion and thermal noise terms. The statistical data reveal that equilibrium and

nonequilibrium properties of an active force dipole can be characterized by ex-

ponentially and oscillatory decaying correlation functions, respectively. To our

knowledge, the present work is the first study where hydrodynamic force dipoles

of mechanochemical enzymes have been systematically analyzed and order-of-

magnitude estimates for the intensity of such dipoles for characteristic enzymes

have been obtained.

In Chap. 3, we have considered force dipoles immersed in a solvent of vis-

cosity ηs and discussed the effective shear viscosity of an enzymatic solution

ηe. Employing the Boltzmann distribution weighted by the waiting times of

enzymatic species in each catalytic cycle, we have obtained ηe as a function of

substrate concentration and its physical properties. As a result of the compe-

tition between the energy difference of the enzyme two internal states and the

substrate concentration, we have shown that the enzyme solution viscosity ex-

hibits a nonmonotonic behavior that depends on the physical properties of the

binding substrates. We emphasize that this work sheds light on the influence of

biological nanomachines on the rheological properties of suspending fluids.

In Chap. 4, we have discussed the hydrodynamic collective effects due to
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active force dipoles that are immersed in lipid bilayer membranes. Specifically,

the obtained diffusion coefficients DA and drift velocities V of a passive particle

were obtained in the enzyme solution for free and confined membrane geome-

tries. Since the model accounts for the bulk solvent, the hydrodynamic screening

lengths ν−1 and κ−1 enter in the results and give rise to the rich dependencies of

DA and V on the probe size. Due to the interplay between the thermal and non-

thermal contributions to the diffusive dynamics, we have shown that the three

different scaling regimes of the total diffusion coefficient are expected with the

increasing particle size, i.e., ln($c) → 1/$2c → 1/$c for the free membrane case

and ln($c) → 1/$4c → 1/$2c for the confined membrane case. These behaviors of

the diffusion coefficient would be observed in active membranes by tuning the

size of a probe particle with microrheology techniques.

In Chap. 5, we have discussed the hydrodynamic response of a point force and

a finite-size object in a 2D compressible fluid with odd viscosity. The viscosity

coefficient reflects that the time-reversal and parity symmetries are broken in

aqueous environments. Taking into account the hydrodynamic coupling to the

underlying bulk fluid, we have obtained the odd viscosity-dependent mobility

tensor Gij, which is responsible for the nonreciprocal hydrodynamic response to

a point force, i.e., Gij (= Gji. Furthermore, we have extended the point-force

response to a finize-size disk response, which moves laterally in the fluid and

demonstrated that the resistance tensor Γij exhibits the nonreciprocal relation,

Γij (= Γji. This nonreciprocity leads to a lift force on the disk in addition to the

drag one and would be observed in biological monolayers with active constituents

such as rotary motor proteins.

Finally in Chap. 6, we have discussed hydrodynamic forces acting on a 2D

liquid domain that moves laterally within an incompressible fluid membrane

in the presence of odd viscosity. Since active rotating proteins can accumulate

inside the domain, we have focused on the difference in odd viscosity between the

inside (η′o) and outside (ηo) of the domain. Taking into account the momentum
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leakage from a 2D fluid to the underlying substrate, we have calculated the fluid

flow induced by the lateral domain motion, and derived the domain resistance

tensor that turned out to be nonreciprocal, i.e., Γij (= Γji only when ηo (= η′o.

As before, the nonreciprocal relation leads to a lift force on the domain. Our

results have shown that odd viscosity would be observed in biological membranes

in which rotating proteins are heterogeneously distributed, which is in sharp

contrast to the case of compressible fluids studied in Chap. 5.

7.2 Future prospects

For future work, the active force dipole model can be extended to active ro-

tating proteins that exert torque along their axes rather than force dipoles. Such

a theory can serve as a base to study the parity-breaking effects on the nonequi-

librium transport phenomena such as diffusion enhancement (see Chaps. 2-4)

and chemotaxis (see Chap. 4). It will be also useful to investigate how these

physical quantities are modified due to the concentration of biological nanoma-

chines. A possible approach is to consider stresses that are exerted by rigid

particles on surrounding fluids (see, e.g., Ref. [7.1]).

Furthermore, it is possible to consider active force dipoles to model cyto-

plasmic streaming that is directional flows observed mainly in plant cells and

plays roles in their growth [7.2]. By introducing force dipoles in the vicinity of

a cellular membrane and taking into account hydrodynamic flows induced by

the dipoles, one can obtain the macroscopic flow, which can be compared with

cytoplasmic streaming. In addition, the flow may exhibit unidirectional flows

that would depend on the order parameter defined by the average direction of

the dipoles. These edge currents have been observed in an odd-viscous fluid

(see Chaps. 5 and 6) and the odd transport coefficient is expected to play an

important role in the model.

In addition, it is possible to consider the bulk solvent effect on the resistance

tensor of a disk in a compressible fluid with odd viscosity. In Chap. 5, the
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obtained drag and lift forces are valid in the limit of κR ) 1 as we have ig-

nored the body force densities in the Lorentz reciprocal theorem. To obtain the

expressions for κR + 1, one has to consider other approaches, e.g., numerical

simulations of the boundary integral equations [7.3] or the full derivation of the

solutions of the hydrodynamic equations for a 2D chiral fluid [7.4].

More generally, it can be useful to reveal the existence of odd viscosity in

microscopic approaches. Numerically, active chiral systems with rotating con-

stituents have been investigated in light of phase separation dynamics [7.5] and

an inertial lift force [7.6]. However, there have been less studies that aim at

extracting the odd transport coefficient in such systems. On the other hand,

collective behavior of enzymes in active chiral media deserve attention as well.

In the presence of thermal noise, one has to consider the generalization of the

fluctuation-dissipation theorem as well as the Langevin equation with multi-

plicative noise when the friction coefficient depends on the position [7.7]. These

interesting questions are left for future investigations.
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