147 research outputs found

    Toll-like receptor stimulation induces higher TNF-alpha secretion in peripheral blood mononuclear cells from patients with hyper IgE syndrome

    Get PDF
    Hyper IgE syndromes (HIES) are primary immunodeficiency disorders of unknown pathogenesis. Patients are typically affected with `cold' abscesses of the skin, recurrent cyst-forming pneumonia, chronic mucocutaneous candidiasis and other less frequent features such as progressive skeletal abnormalities. Defective signaling in the Toll-like receptor (TLR) pathways has been suggested as a responsible pathologic mechanism, however, in previous reports, 10 patients revealed no defect in inflammatory cytokine responses to different TLR ligands. Here, we report the increase in pro-inflammatory cytokines TNF-alpha and IL-8, following TLR2 and TLR4 stimulation in a larger cohort of 25 additional patients with HIES, and provide a meta-analysis of the TLR data in HIES. Copyright (C) 2008 S. Karger AG, Basel

    A new neonatal BCG vaccination pathway in England: a mixed methods evaluation of its implementation.

    Get PDF
    INTRODUCTION: The introduction of a national evaluation of newborn screening for Severe Combined Immunodeficiency (SCID) in England triggered a change to the selective Bacillus Calmette-Guerin (BCG) vaccination programme delivery pathway, as this live attenuated vaccine is contraindicated in infants with SCID. The neonatal BCG vaccination programme is a targeted programme for infants at increased risk of tuberculosis and used to be offered shortly after birth. Since September 2021 the BCG vaccine is given to eligible infants within 28 days of birth, when the SCID screening outcome is available. We explore the experiences of those implementing the new pathway, and how they made sense of, engaged with, and appraised the change. METHODS: A mixed-methods evaluation was conducted between October 2022 and February 2023. This involved national online surveys with BCG commissioners and providers and qualitative semi-structured interviews with commissioners, providers, and Child Health Information System stakeholders in two urban areas. Survey data was analysed using descriptive statistics and interview data was analysed thematically. The data was triangulated using Normalization Process Theory as a guiding framework. RESULTS: Survey respondents (n = 65) and qualitative interviewees (n = 16) revealed that making sense of the new pathway was an iterative process. Some expressed a desire for more direction on how to implement the new pathway. The perceived value of the change varied from positive, ambivalent, to concerned. Some felt well-prepared and that improvements to data capture, eligibility screening, and accountably brought by the change were valuable. Others were concerned about the feasibility of the 28-day target, reductions in vaccination coverage, increased resource burden, and the outcome of the SCID evaluation. New collaborations and communities of practice were required to facilitate the change. Three main challenges in implementing the pathway and meeting the 28-day vaccination target were identified: appointment non-attendance; appointment and data systems; and staffing and resourcing. Feedback mechanisms were informal and took place in tandem with implementation. CONCLUSION: The new NHS neonatal BCG service specification has created an effective structure for monitoring and managing the BCG vaccination programme, but further work is required to support delivery of the 28-day vaccination target and improve uptake rates

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    Btk regulates macrophage polarization in response to lipopolysaccharide

    Get PDF
    Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (−\−)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(−/−) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(−/−) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(−/−) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (−/−) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation

    P38 Mitogen-Activated Protein Kinase Inhibitor, FR167653, Inhibits Parathyroid Hormone Related Protein-Induced Osteoclastogenesis and Bone Resorption

    Get PDF
    p38 mitogen-activated protein kinase (MAPK) acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK), a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP)-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs) in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1) in bone marrow macrophages(BMMs) stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG) and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption

    Refining associations between TAS2R38 diplotypes and the 6-n-propylthiouracil (PROP) taste test: findings from the Avon Longitudinal Study of Parents and Children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous investigations have highlighted the importance of genetic variation in the determination of bitter tasting ability, however have left unaddressed questions as to within group variation in tasting ability or the possibility of genetic prescription of intermediate tasting ability. Our aim was to examine the relationships between bitter tasting ability and variation at the <it>TAS2R38 </it>locus and to assess the role of psychosocial factors in explaining residual, within group, variation in tasting ability.</p> <p>Results</p> <p>In a large sample of children from the Avon Longitudinal Study of Parents and Children, we confirmed an association between bitter compound tasting ability and <it>TAS2R38 </it>variation and found evidence of a genetic association with intermediate tasting ability. Antisocial behaviour, social class and depression showed no consistent relationship with the distribution of taste test scores.</p> <p>Conclusion</p> <p>Factors which could influence a child's chosen taste score, extra to taste receptor variation, appeared not to show relationships with test score. Observed spread in the distribution of the taste test scores <it>within </it>hypothesised taster groups, is likely to be, or at least in part, due to physiological differentiation regulated by other genetic contributors. Results confirm relationships between genetic variation and bitter compound tasting ability in a large sample, and suggest that <it>TAS2R38 </it>variation may also be associated with intermediate tasting ability.</p

    Critical Roles of the WASP N-Terminal Domain and Btk in LPS-Induced Inflammatory Response in Macrophages

    Get PDF
    While Wiskott-Aldrich syndrome protein (WASP) plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM) cell lines from WASP15 transgenic (Tg) mice overexpressing the WASP N-terminal region (exons 1–5). Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH) 3 domain of Bruton's tyrosine kinase (Btk). Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity

    Dendritic and T Cell Response to Influenza is Normal in the Patients with X-Linked Agammaglobulinemia

    Get PDF
    Introduction Influenza virus is a potential cause of severe disease in the immunocompromised. X-linked agammaglobu-linemia (XLA) is a primary immunodeficiency characterized by the lack of immunoglobulin, B cells, and plasma cells, secondary to mutation in Bruton’s tyrosine kinase (Btk) gene

    Themis2/ICB1 Is a Signaling Scaffold That Selectively Regulates Macrophage Toll-Like Receptor Signaling and Cytokine Production

    Get PDF
    BACKGROUND: Thymocyte expressed molecule involved in selection 1 (Themis1, SwissProt accession number Q8BGW0) is the recently characterised founder member of a novel family of proteins. A second member of this family, Themis2 (Q91YX0), also known as ICB1 (Induced on contact with basement membrane 1), remains unreported at the protein level despite microarray and EST databases reporting Themis2 mRNA expression in B cells and macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Here we characterise Themis2 protein for the first time and show that it acts as a macrophage signalling scaffold, exerting a receptor-, mediator- and signalling pathway-specific effect on TLR responses in RAW 264.7 macrophages. Themis2 over-expression enhanced the LPS-induced production of TNF but not IL-6 or Cox-2, nor TNF production induced by ligands for TLR2 (PAM3) or TLR3 (poly IratioC). Moreover, LPS-induced activation of the MAP kinases ERK and p38 was enhanced in cells over-expressing Themis2 whereas the activation of JNK, IRF3 or NF-kappaB p65, was unaffected. Depletion of Themis2 protein by RNA inteference inhibited LPS-induced TNF production in primary human macrophages demonstrating a requirement for Themis2 in this event. Themis2 was inducibly tyrosine phosphorylated upon LPS challenge and interacted with Lyn kinase (P25911), the Rho guanine nucleotide exchange factor, Vav (P27870), and the adaptor protein Grb2 (Q60631). Mutation of either tyrosine 660 or a proline-rich sequence (PPPRPPK) simultaneously interrupted this complex and reduced by approximately 50% the capacity of Themis2 to promote LPS-induced TNF production. Finally, Themis2 protein expression was induced during macrophage development from murine bone marrow precursors and was regulated by inflammatory stimuli both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: We hypothesise that Themis2 may constitute a novel, physiological control point in macrophage inflammatory responses
    • …
    corecore