155 research outputs found

    Avian influenza H5N1: still a pandemic threat?

    Get PDF
    Highly pathogenic avian influenza H5N1 viruses have become endemic in global poultry populations over the past 25 years and pose an ongoing public health threat. Although the incidence of human cases has declined, viruses from the H5N1 lineage can now be found in poultry throughout Asia, the Middle East and Africa, in addition to causing outbreaks in Europe and the Americas. The recent emergence and spread of reassortant H5Nx viruses, resulting in regional poultry outbreaks, has increased the risk for further evolution of these viruses and possible avian-to-human transmission. Ongoing surveillance and pandemic preparedness for H5N1 and other avian influenza viruses of public health concern are warranted

    Herpesviruses in reptiles

    Get PDF
    Since the 1970s, several species of herpesviruses have been identified and associated with significant diseases in reptiles. Earlier discoveries placed these viruses into different taxonomic groups on the basis of morphological and biological characteristics, while advancements in molecular methods have led to more recent descriptions of novel reptilian herpesviruses, as well as providing insight into the phylogenetic relationship of these viruses. Herpesvirus infections in reptiles are often characterised by non-pathognomonic signs including stomatitis, encephalitis, conjunctivitis, hepatitis and proliferative lesions. With the exception of fibropapillomatosis in marine turtles, the absence of specific clinical signs has fostered misdiagnosis and underreporting of the actual disease burden in reptilian populations and hampered potential investigations that could lead to the effective control of these diseases. In addition, complex life histories, sampling bias and poor monitoring systems have limited the assessment of the impact of herpesvirus infections in wild populations and captive collections. Here we review the current published knowledge of the taxonomy, pathogenesis, pathology and epidemiology of reptilian herpesviruses

    Draft Genome Sequence of a Novel Adenovirus Recovered from the Metagenome of Agile Wallabies

    Get PDF
    Here, we report the draft genome sequence of a novel agile wallaby adenovirus that was detected in the fecal metagenome of agile wallabies. The genome is 31,512 bp long, with a G+C content of 34.4%. Currently, the pathogenic and zoonotic potential of this novel virus is unknown

    Molecular detection of novel herpesviruses and adenoviruses in two species of Australian freshwater turtles

    Get PDF
    Cutaneous lesions were observed in a wild population of freshwater turtles during routine disease surveillance at Alligator Creek, Townsville, Australia. Previous attempts to identify the causative agent of these lesions were unsuccessful; however, existing evidence suggests viral etiology. To further investigate these events, blood samples and lesion, oral and cloacal swabs collected from 128 freshwater turtles at two locations (Alligator Creek and Ross River) were screened for herpesvirus, adenovirus, poxvirus and papillomavirus by polymerase chain reaction. We detected three novel herpesviruses (chelid herpesvirus 1–3) as well as three adenoviruses (saw-shelled turtle adenovirus 1–3). Phylogenetic analyses showed that the herpesviruses formed a distinct clade with the tumour-associated chelonid alphaherpesvirus 5 (Scutavirus chelonidalpha5) within the subfamily Alphaherpesvirinae. The adenoviruses clustered with members of the genus Testadenovirus. Although the novel herpesviruses and adenoviruses could not be linked to the occurrence of cutaneous lesions, further characterisation will help provide better insights into their clinical, epidemiological and conservation significance

    Arboviral disease outbreaks in the Pacific Islands countries and areas, 2014 to 2020: a systematic literature and document review

    Get PDF
    Arthropod-borne diseases pose a significant public health threat, accounting for greater than 17% of infectious disease cases and 1 million deaths annually. Across Pacific Island countries and areas (PICs), outbreaks of dengue, chikungunya, and Zika are increasing in frequency and scale. Data about arbovirus outbreaks are incomplete, with reports sporadic, delayed, and often based solely on syndromic surveillance. We undertook a systematic review of published and grey literature and contacted relevant regional authorities to collect information about arboviral activity affecting PICs between October 2014 and June 2020. Our literature search identified 1176 unique peer-reviewed articles that were reduced to 25 relevant publications when screened. Our grey literature search identified 873 sources. Collectively, these data reported 104 unique outbreaks, including 72 dengue outbreaks affecting 19 (out of 22) PICs, 14 chikungunya outbreaks affecting 11 PICs, and 18 Zika outbreaks affecting 14 PICs. Our review is the most complete account of arboviral outbreaks to affect PICs since comparable work was published in 2014. It highlights the continued elevated level of arboviral activity across the Pacific and inconsistencies in how information about outbreaks is reported and recorded. It demonstrates the importance of a One-Health approach and the role that improved communication and reporting between different governments and sectors play in understanding the emergence, circulation, and transboundary risks posed by arboviral diseases

    Development of subfamily-based consensus PCR assays for the detection of human and animal herpesviruses

    Get PDF
    Consensus PCR assays that can be used to sensitively detect several herpesvirus (HV) species across the different subfamilies were developed in this study. Primers containing degenerate bases were designed to amplify regions of the DNA polymerase (DPOL) gene of alpha- and gamma-HVs, and the glycoprotein B (gB) gene of beta-HVs in a singleplex, non-nested touchdown PCR format. The singleplex touchdown consensus PCR (STC-PCR) was used to amplify the DNA of eight human and 24 animal HVs. The assay was able to detect the lowest DNA dilution of 10βˆ’5 for alpha-HVs and 10βˆ’3 for beta- and gamma-HVs. In comparison, lowest detection limits of 10βˆ’5, 10βˆ’3, and 10βˆ’2 were obtained for alpha-, beta-, and gamma-HVs respectively when a nested PCR was used. The findings in this study suggest that the STC-PCR assays can be employed for the molecular surveys and clinical detection of novel and known HVs

    The ecology and evolution of Japanese encephalitis virus

    Get PDF
    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus mainly spread by Culex mosquitoes that currently has a geographic distribution across most of Southeast Asia and the Western Pacific. Infection with JEV can cause Japanese encephalitis (JE), a severe disease with a high mortality rate, which also results in ongoing sequalae in many survivors. The natural reservoir of JEV is ardeid wading birds, such as egrets and herons, but pigs commonly play an important role as an amplifying host during outbreaks in human populations. Other domestic animals and wildlife have been detected as hosts for JEV, but their role in the ecology and epidemiology of JEV is uncertain. Safe and effective JEV vaccines are available, but unfortunately, their use remains low in most endemic countries where they are most needed. Increased surveillance and diagnosis of JE is required as climate change and social disruption are likely to facilitate further geographical expansion of Culex vectors and JE risk areas

    Inventory of molecular markers affecting biological characteristics of avian influenza A viruses

    Get PDF
    Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9

    Repertoire of Bovine miRNA and miRNA-Like Small Regulatory RNAs Expressed upon Viral Infection

    Get PDF
    MicroRNA (miRNA) and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA) loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase) and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals

    Analytical sensitivity of COVID-19 rapid antigen tests: A case for a robust reference standard

    Get PDF
    Aggressive diagnostic testing remains an indispensable strategy for health and aged care facilities to prevent the transmission of SARS-CoV-2 in vulnerable populations. The preferred diagnostic platform has shifted towards COVID-19 rapid antigen tests (RATs) to identify the most infectious individuals. As such, RATs are being manufactured faster than at any other time in our history yet lack the relevant quantitative analytics required to inform on absolute analytical sensitivity enabling manufacturers to maintain high batch-to-batch reproducibility, and end-users to accurately compare brands for decision making. Here, we describe a novel reference standard to measure and compare the analytical sensitivity of RATs using a recombinant GFP-tagged nucleocapsid protein (NP-GFP). Importantly, we show that the GFP tag does not interfere with NP detection and provides several advantages affording streamlined protein expression and purification in high yields as well as faster, cheaper and more sensitive quality control measures for post-production assessment of protein solubility and stability. Ten commercial COVID-19 RATs were evaluated and ranked using NP-GFP as a reference standard. Analytical sensitivity data of the selected devices as determined with NP-GFP did not correlate with those reported by the manufacturers using the median tissue culture infectious dose (TCID50) assay. Of note, TCID50 discordance has been previously reported. Taken together, our results highlight an urgent need for a reliable reference standard for evaluation and benchmarking of the analytical sensitivity of RAT devices. NP-GFP is a promising candidate as a reference standard that will ensure that RAT performance is accurately communicated to healthcare providers and the public
    • …
    corecore