644 research outputs found

    Infection of Cultured Human Endothelial Cells by Legionella pneumophila

    Get PDF
    Legionella pneumophila is a gram-negative pathogen that causes a severe pneumonia known as Legionnaires' disease. Here, we demonstrate for the first time that L. pneumophila infects and grows within cultured human endothelial cells. Endothelial infection may contribute to lung damage observed during Legionnaires' disease and to systemic spread of this organism

    Toll-Like Receptor 3 Signaling on Macrophages Is Required for Survival Following Coxsackievirus B4 Infection

    Get PDF
    Toll-like receptor 3 (TLR3) has been proposed to play a central role in the early recognition of viruses by sensing double stranded RNA, a common intermediate of viral replication. However, several reports have demonstrated that TLR3 signaling is either dispensable or even harmful following infection with certain viruses. Here, we asked whether TLR3 plays a role in the response to coxsackievirus B4 (CB4), a prevalent human pathogen that has been associated with pancreatitis, myocarditis and diabetes. We demonstrate that TLR3 signaling on macrophages is critical to establish protective immunity to CB4. TLR3 deficient mice produced reduced pro-inflammatory mediators and are unable to control viral replication at the early stages of infection resulting in severe cardiac damage. Intriguingly, the absence of TLR3 did not affect the activation of several key innate and adaptive cellular effectors. This suggests that in the absence of TLR3 signaling on macrophages, viral replication outpaces the developing adaptive immune response. We further demonstrate that the MyD88-dependent signaling pathways are not only unable to compensate for the loss of TLR3, they are also dispensable in the response to this RNA virus. Our results demonstrate that TLR3 is not simply part of a redundant system of viral recognition, but rather TLR3 plays an essential role in recognizing the molecular signatures associated with specific viruses including CB4

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Hydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics

    Get PDF
    Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2–10 µM), R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation

    Neural Substrates for the Motivational Regulation of Motor Recovery after Spinal-Cord Injury

    Get PDF
    It is believed that depression impedes and motivation enhances functional recovery after neuronal damage such as spinal-cord injury and stroke. However, the neuronal substrate underlying such psychological effects on functional recovery remains unclear. A longitudinal study of brain activation in the non-human primate model of partial spinal-cord injury using positron emission tomography (PET) revealed a contribution of the primary motor cortex (M1) to the recovery of finger dexterity through the rehabilitative training. Here, we show that activity of the ventral striatum, including the nucleus accumbens (NAc), which plays a critical role in processing of motivation, increased and its functional connectivity with M1 emerged and was progressively strengthened during the recovery. In addition, functional connectivities among M1, the ventral striatum and other structures belonging to neural circuits for processing motivation, such as the orbitofrontal cortex, anterior cingulate cortex and pedunculopontine tegmental nucleus were also strengthened during the recovery. These results give clues to the neuronal substrate for motivational regulation of motor learning required for functional recovery after spinal-cord injury

    Concurrence of Danish Dementia and Cataract: Insights from the Interactions of Dementia Associated Peptides with Eye Lens α-Crystallin

    Get PDF
    Familial Danish Dementia (FDD) is an autosomal disease, which is distinguished by gradual loss of vision, deafness, progressive ataxia and dementia. Cataract is the first manifestation of the disease. In this article, we demonstrate a specific correlation between the poisoning of the chaperone activity of the rat eye lens α-crystallins, loss of lens transparency in organ culture by the pathogenic form of the Danish dementia peptide, i.e. the reduced Danish dementia peptide (redADan peptide), by a combination of ex vivo, in vitro, biophysical and biochemical techniques. The interaction of redADan peptide and lens crystallins are very specific when compared with another chaperone, HSP-70, underscoring the specificity of the pathogenic form of Danish dementia peptide, redADan, for the early onset of cataract in this disease

    Comprehensive Identification of Protein Substrates of the Dot/Icm Type IV Transporter of Legionella pneumophila

    Get PDF
    A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter

    Mutations in the ELANE Gene are Associated with Development of Periodontitis in Patients with Severe Congenital Neutropenia

    Get PDF
    # The Author(s) 2011. This article is published with open access at Springerlink.com Background Patients with severe congenital neutropenia (SCN) often develop periodontitis despite standard medical and dental care. In light of previous findings that mutations in the neutrophil elastase gene, ELANE, are associated with more severe neutropenic phenotypes, we hypothesized an association between the genotype of SCN and development of periodontitis. Methods Fourteen Swedish patients with SCN or cyclic neutropenia harboring different genetic backgrounds were recruited for periodontal examination. Peripheral blood, gingival crevicular fluid (GCF), and subgingival bacterial Thomas Modéer and Katrin Pütsep have contributed equally to the study
    corecore