244 research outputs found

    Fermat Principle for spinning light

    Full text link
    Mimicking the description of spinning particles in General Relativity, the Fermat Principle is extended to spinning photons. Linearization of the resulting Papapetrou-Souriau type equations yields the semiclassical model used recently to derive the ``Optical Hall Effect'' (alias the ``Optical Magnus Effect'') for polarized light.Comment: Final revised version, to appear in Phys. Rev. D (Rapid Communication). 5 pages, no figure

    Anomalous Hall Effect in non-commutative mechanics

    Full text link
    The anomalous velocity term in the semiclassical model of a Bloch electron deviates the trajectory from the conventional one. When the Berry curvature (alias noncommutative parameter) is a monopole in momentum space as found recently in some ferromagnetic semiconductors while observing the anomalous Hall effect, we get a transverse shift, similar to that in the optical Hall effect.Comment: 4 pages. A figure added. To be published in Phys. Lett.

    Non-commutative mechanics, in mathematical & in condensed matter physics

    Get PDF
    Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table~1). Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ``exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.Comment: This is a contribution to the Proc. of the O'Raifeartaigh Symposium on Non-Perturbative and Symmetry Methods in Field Theory (June 2006, Budapest, Hungary), published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA
    corecore