1,913 research outputs found

    Stringent constraint on the scalar-neutrino coupling constant from quintessential cosmology

    Get PDF
    An extremely light (mϕ≪10−33eVm_{\phi} \ll 10^{-33} {\rm eV}), slowly-varying scalar field ϕ\phi (quintessence) with a potential energy density as large as 60% of the critical density has been proposed as the origin of the accelerated expansion of the Universe at present. The interaction of this smoothly distributed component with another predominately smooth component, the cosmic neutrino background, is studied. The slow-roll approximation for generic ϕ\phi potentials may then be used to obtain a limit on the scalar-neutrino coupling constant, found to be many orders of magnitude more stringent than the limits set by observations of neutrinos from SN 1987A. In addition, if quintessential theory allows for a violation of the equivalence principle in the sector of neutrinos, the current solar neutrino data can probe such a violation at the 10^{-10} level.Comment: 7 pages, MPLA in press, some parts disregarded and a footnote adde

    Uni-directional transport properties of a serpent billiard

    Full text link
    We present a dynamical analysis of a classical billiard chain -- a channel with parallel semi-circular walls, which can serve as a model for a bended optical fiber. An interesting feature of this model is the fact that the phase space separates into two disjoint invariant components corresponding to the left and right uni-directional motions. Dynamics is decomposed into the jump map -- a Poincare map between the two ends of a basic cell, and the time function -- traveling time across a basic cell of a point on a surface of section. The jump map has a mixed phase space where the relative sizes of the regular and chaotic components depend on the width of the channel. For a suitable value of this parameter we can have almost fully chaotic phase space. We have studied numerically the Lyapunov exponents, time auto-correlation functions and diffusion of particles along the chain. As a result of a singularity of the time function we obtain marginally-normal diffusion after we subtract the average drift. The last result is also supported by some analytical arguments.Comment: 15 pages, 9 figure (19 .(e)ps files

    City Typology, for context-sensitive framework and tools development

    Get PDF
    In order to better understand the factors that hinder SUMP development and address urban mobility challenges, CIVITAS SUMP-PLUS is working within six co-creation laboratories in six cities. Yet due to the varying circumstances and mobility contexts in the project’s partner and (more generally) European cities, SUMP-PLUS determined the need for a city typology that enables the comparison of and the identification of differences between these varied city contexts. This report delivers an overview of the sources and methods used by different organisations, projects and other institutions when creating city typologies. Finally, this report sets out SUMP-PLUS’s own mobility-focused city typology, whose development has drawn on the aforementioned city typologies

    Dynamical approach to chains of scatterers

    Full text link
    Linear chains of quantum scatterers are studied in the process of lengthening, which is treated and analysed as a discrete dynamical system defined over the manifold of scattering matrices. Elementary properties of such dynamics relate the transport through the chain to the spectral properties of individual scatterers. For a single-scattering channel case some new light is shed on known transport properties of disordered and noisy chains, whereas translationally invariant case can be studied analytically in terms of a simple deterministic dynamical map. The many-channel case was studied numerically by examining the statistical properties of scatterers that correspond to a certain type of transport of the chain i.e. ballistic or (partially) localised.Comment: 16 pages, 7 figure

    Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    Full text link
    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed data well either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light time travel effect, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes photon-weighted mode, enhanced limb darkening treatment, better reflection treatment and Doppler boosting. Here we present the concepts on which PHOEBE is built on and proofs of concept that demonstrate the increased model fidelity.Comment: 60 pages, 15 figures, published in ApJS; accompanied by the release of PHOEBE 2.0 on http://phoebe-project.or

    Holography and Variable Cosmological Constant

    Full text link
    An effective local quantum field theory with UV and IR cutoffs correlated in accordance with holographic entropy bounds is capable of rendering the cosmological constant (CC) stable against quantum corrections. By setting an IR cutoff to length scales relevant to cosmology, one easily obtains the currently observed rho_Lambda ~ 10^{-47} GeV^4, thus alleviating the CC problem. It is argued that scaling behavior of the CC in these scenarios implies an interaction of the CC with matter sector or a time-dependent gravitational constant, to accommodate the observational data.Comment: 7 pages, final version accepted by PR

    An assessment of scale-dependent variability and bias in global prediction models

    Get PDF
    The paper presents a method for the scale-dependent validation of the spatio-temporal variability in global weather or climate models and for their bias quantification in relation to dynamics. The method provides a relationship between the bias and simulated spatial and temporal variance by a model in comparison with verifying reanalysis data. For the low resolution (T30L8) subset of ERA-20C data, it was found that 80–90 (depending on season) of the global interannual variance is at planetary scales (zonal wavenumbers k = 0−3), and only about 1 of the variance is at scales with k> 7. The reanalysis is used to validate a T30L8 GCM in two configurations, one with the prescribed sea-surface temperature (SST) and another using a slab ocean model. Although the model with the prescribed SST represents the average properties of surface fields well, the interannual variability is underestimated at all scales. Similar to variability, model bias is strongly scale dependent. Biases found in the experiment with the prescribed SST are largely increased in the experiment using a slab ocean, especially in k= 0 , in scales with missing variability and in seasons with poorly simulated energy distribution. The perfect model scenario (a comparison between the GCM coupled to a slab ocean vs. the same model with prescribed SSTs) shows that the representation of the ocean is not critical for synoptic to subsynoptic variability, but essential for capturing the planetary scales. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature
    • …
    corecore