760 research outputs found

    Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    Get PDF
    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and Processing 201

    The critical properties of the agent-based model with environmental-economic interactions

    Get PDF
    The steady-state and nonequilibrium properties of the model of environmental-economic interactions are studied. The interacting heterogeneous agents are simulated on the platform of the emission dynamics of cellular automaton. The model possess the discontinuous transition between the safe and catastrophic ecology. Right at the critical line, the broad-scale power-law distributions of emission rates have been identified. Their relationship to Zipf's law and models of self-organized criticality is discussed.Comment: 12 pages, 6 figures, published in Physica

    A Two-loop Test of Buscher's T-duality I

    Full text link
    We study the two loop quantum equivalence of sigma models related by Buscher's T-duality transformation. The computation of the two loop perturbative free energy density is performed in the case of a certain deformation of the SU(2) principal sigma model, and its T-dual, using dimensional regularization and the geometric sigma model perturbation theory. We obtain agreement between the free energy density expressions of the two models.Comment: 28 pp, Latex, references adde

    Asymptotic function for multi-growth surfaces using power-law noise

    Full text link
    Numerical simulations are used to investigate the multiaffine exponent αq\alpha_q and multi-growth exponent βq\beta_q of ballistic deposition growth for noise obeying a power-law distribution. The simulated values of βq\beta_q are compared with the asymptotic function βq=1q\beta_q = \frac{1}{q} that is approximated from the power-law behavior of the distribution of height differences over time. They are in good agreement for large qq. The simulated αq\alpha_q is found in the range 1qαq2q+1\frac{1}{q} \leq \alpha_q \leq \frac{2}{q+1}. This implies that large rare events tend to break the KPZ universality scaling-law at higher order qq.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Invading interfaces and blocking surfaces in high dimensional disordered systems

    Full text link
    We study the high-dimensional properties of an invading front in a disordered medium with random pinning forces. We concentrate on interfaces described by bounded slope models belonging to the quenched KPZ universality class. We find a number of qualitative transitions in the behavior of the invasion process as dimensionality increases. In low dimensions d<6d<6 the system is characterized by two different roughness exponents, the roughness of individual avalanches and the overall interface roughness. We use the similarity of the dynamics of an avalanche with the dynamics of invasion percolation to show that above d=6d=6 avalanches become flat and the invasion is well described as an annealed process with correlated noise. In fact, for d5d\geq5 the overall roughness is the same as the annealed roughness. In very large dimensions, strong fluctuations begin to dominate the size distribution of avalanches, and this phenomenon is studied on the Cayley tree, which serves as an infinite dimensional limit. We present numerical simulations in which we measured the values of the critical exponents of the depinning transition, both in finite dimensional lattices with d6d\leq6 and on the Cayley tree, which support our qualitative predictions. We find that the critical exponents in d=6d=6 are very close to their values on the Cayley tree, and we conjecture on this basis the existence of a further dimension, where mean field behavior is obtained.Comment: 12 pages, REVTeX with 2 postscript figure

    Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy

    Full text link
    Scanning tunneling microscopy (STM) gives us the opportunity to map the surface of functionalized carbon nanotubes in an energy resolved manner and with atomic precision. But this potential is largely untapped, mainly due to sample stability issues which inhibit reliable measurements. Here we present a simple and straightforward solution that makes away with this difficulty, by incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a few layer graphene - nanotube composite. This enabled us to measure energy resolved tunneling conductance maps on the nanotubes, which shed light on the level of doping, charge transfer between tube and functional groups and the dependence of defect creation or functionalization on crystallographic orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene, STM, CITS, ST
    corecore