1,571 research outputs found

    Quality interoperability within digital libraries: the DL.org perspective

    Get PDF
    Quality is the most dynamic aspect of DLs, and becomes even more complex with respect to interoperability. This paper formalizes the research motivations and hypotheses on quality interoperability conducted by the Quality Working Group within the EU-funded project DL.org (<a href="http://www.dlorg.eu">http://www.dlorg.eu/</a>). After providing a multi-level interoperability framework – adopted by DL.org - the authors illustrate key-research points and approaches on the way to the interoperability of DLs quality, grounding them in the DELOS Reference Model. By applying the DELOS Reference Model Quality Concept Map to their interoperability motivating scenario, the authors subsequently present the two main research outcomes of their investigation - the Quality Core Model and the Quality Interoperability Survey

    Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study

    Get PDF
    We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states

    Rieger, Schwabe, Suess-de Vries: The Sunny Beats of Resonance

    Full text link
    We propose a self-consistent explanation of Rieger-type periodicities, the Schwabe cycle, and the Suess-de Vries cycle in terms of resonances of various wave phenomena with gravitational forces exerted by the orbiting planets. Starting on the high-frequency side, we show that the two-planet spring tides of Venus, Earth and Jupiter are able to excite magneto-Rossby waves which can be linked with typical Rieger-type periods. We argue then that the 11.07-year beat period of those magneto-Rossby waves synchronizes an underlying conventional αΩ\alpha-\Omega-dynamo, by periodically changing either the field storage capacity in the tachocline or some portion of the α\alpha-effect therein. We also strengthen the argument that the Suess-de Vries cycle appears as an 193-year beat period between the 22.14-year Hale cycle and a spin-orbit coupling effect related with the 19.86-year rosette-like motion of the Sun around the barycenter.Comment: 31 pages, 12 figure

    Wavelet Analysis for Wind Fields Estimation

    Get PDF
    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms

    Coherent control of a surface structural phase transition

    Get PDF
    Active optical control over matter is desirable in many scientific disciplines, with prominent examples in all-optical magnetic switching1,2, light-induced metastable or exotic phases of solids3,4,5,6,7,8 and the coherent control of chemical reactions9,10. Typically, these approaches dynamically steer a system towards states or reaction products far from equilibrium. In solids, metal-to-insulator transitions are an important target for optical manipulation, offering ultrafast changes of the electronic4 and lattice11,12,13,14,15,16 properties. The impact of coherences on the efficiencies and thresholds of such transitions, however, remains a largely open subject. Here, we demonstrate coherent control over a metal–insulator structural phase transition in a quasi-one-dimensional solid-state surface system. A femtosecond double-pulse excitation scheme17,18,19,20 is used to switch the system from the insulating to a metastable metallic state, and the corresponding structural changes are monitored by ultrafast low-energy electron diffraction21,22. To govern the transition, we harness vibrational coherence in key structural modes connecting both phases, and observe delay-dependent oscillations in the double-pulse switching efficiency. Mode-selective coherent control of solids and surfaces could open new routes to switching chemical and physical functionalities, enabled by metastable and non-equilibrium states

    The Cognitive-Evolutionary Model of Surprise: A Review of the Evidence

    Get PDF
    Research on surprise relevant to the cognitive-evolutionary model of surprise proposed by Meyer, Reisenzein, and Schützwohl (1997) is reviewed. The majority of the assumptions of the model are found empirically supported. Surprise is evoked by unexpected (schema-discrepant) events, whereas the novelty and the valence of the eliciting events probably do not have an independent effect. Unexpected events cause an automatic interruption of mental processing that is followed by attentional shift and attentional binding to the events, which is often followed by causal and other event analysis processes and by schema revision. The facial expression of surprise postulated by evolutionary emotion psychologists has been found to occur rarely in surprise, for as yet unknown reasons. A physiological orienting response marked by skin conductance increase, heart rate deceleration and pupil dilation has been observed to regularly occur in the standard version of the repetition-change paradigm of surprise induction, but the specificity of these reactions as indicators of surprise is controversial. There is indirect evidence for the assumption that the feeling of surprise consists of the direct awareness of the schema-discrepancy signal, but this feeling, or at least the self-report of surprise, is also influenced by experienced interference. In contrast, facial feedback probably does contribute substantially to the feeling of surprise and the evidence that surprise is affected by the difficulty of explaining an unexpected event is, in our view, inconclusive. Regardless of how the surprise feeling is constituted, there is evidence that it has both motivational and informational effects. Finally, the prediction failure implied by unexpected events sometimes evokes a negative feeling, but there is as yet no convincing evidence that this is always the case, and we argue that even if it were so, this would not be a sufficient reason for regarding this feeling as a component, rather than as an effect of surprise

    Entirely irrelevant distractors can capture and captivate attention

    Get PDF
    The question of whether a stimulus onset may capture attention when it is entirely irrelevant to the task and even in the absence of any attentional settings for abrupt onset or any dynamic changes has been highly controversial. In the present study, we designed a novel irrelevant capture task to address this question. Participants engaged in a continuous task making sequential forced choice (letter or digit) responses to each item in an alphanumeric matrix that remained on screen throughout many responses. This task therefore involved no attentional settings for onset or indeed any dynamic changes, yet the brief onset of an entirely irrelevant distractor (a cartoon picture) resulted in significant slowing of the two (Experiment 1) or three (Experiment 2) responses immediately following distractor appearance These findings provide a clear demonstration of attention being captured and captivated by a distractor that is entirely irrelevant to any attentional settings of the task

    Surface resonance of the (2×\times1) reconstructed lanthanum hexaboride (001)-cleavage plane: a combined STM and DFT study

    Get PDF
    We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6_\text{6}) using scanning tunneling microscopy (STM) and density functional theory (DFT). Experimentally, we found a (2×\times1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinth-like pattern. These findings are supported by low-energy electron diffraction (LEED) experiments. Slab calculations within the framework of DFT shows that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy (STS) shows a prominent spectral feature at -0.6 eV. Using DFT, we identify this structure as a surface resonance of the (2×\times1) reconstructed LaB6_\text{6} (100)-surface which is dominated by boron dangling bond-states and lanthanum d-states.Comment: 10 pages, 16 figure
    corecore