18 research outputs found

    Pyrene Mineralization by Mycobacterium sp. Strain KMS in a Barley Rhizosphere

    Get PDF
    To determine whether the soil Mycobacterium isolate KMS would mineralize pyrene under rhizosphere conditions, a microcosm system was established to collect radioactive carbon dioxide released from the labeled polycyclic aromatic hydrocarbon. Microcosms were designed as sealed, flow-through systems that allowed the growth of plants. Experiments were conducted to evaluate mineralization of 14C-labeled pyrene in a sand amended with the polycyclic aromatic hydrocarbons degrading Mycobacterium isolate KMS, barley plants, or barley plants with roots colonized by isolate KMS. Mineralization was quantified by collecting the 14CO2 produced from 14C-labeled pyrene at intervals during the 10-d incubation period. Roots and foliar tissues were examined for 14C incorporation. Mass balances for microcosms were determined through combustion of sand samples and collection and quantification of 14CO2 evolved from radiolabeled pyrene. No pyrene mineralization was observed in the sterile control systems. Greater release of 14CO2 was observed in the system with barley colonized by KMS than in microcosms containing just the bacterium inoculum or sterile barley plants. These findings suggest that phytostimulation of polycyclic aromatic hydrocarbons mineralization could be applied in remediation schemes

    Single beam bathymetry transects at the West coast of Sylt from Sep 22-26 2016

    No full text
    The dataset contains quality checked, post processed echo soundings as point data (not gridded). It represents the coastal bathymetry in September 2016 in front of "Bunker Hill" at the southern West coast of the island Sylt, in the German Bight of the North Sea. The "WaveDiss" field experiment was conducted from September 21. to October 2., 2016 at the Island Sylt in the North Sea. The goal of the experiment is to provide ground truth data for validation and development of radar remote sensing methods to study nearshore hydro- and morphodynamics (Link: https://www.hzg.de/institutes_platforms/coastal_research/operational_systems/radar_hydrograph/projectsy/index.php.en#tab-25)

    A Coherent on Receive X-Band Marine Radar for Ocean Observations

    No full text
    Marine radars are increasingly popular for monitoring meteorological and oceanographic parameters such as ocean surface wind, waves and currents as well as bathymetry and shorelines. Within this paper a coherent on receive marine radar is introduced, which is based on an incoherent off the shelf pulsed X-band radar. The main concept of the coherentization is based on the coherent on receive principle, where the coherence is achieved by measuring the phase of the transmitted pulse from a leak in the radar circulator, which then serves as a reference phase for the transmitted pulse. The Doppler shift frequency can be computed from two consecutive pulse-pairs in the time domain or from the first moment of the Doppler spectrum inferred by means of a short time Fast Fourier Transform. From the Doppler shift frequencies, radial speed maps of the backscatter of the ocean surface are retrieved. The resulting backscatter intensity and Doppler speed maps are presented for horizontal as well as vertical polarization, and discussed with respect to meteorological and oceanographic applications
    corecore