725 research outputs found

    Information-flux approach to multiple-spin dynamics

    Full text link
    We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to non-unitary dynamics.Comment: 7 pages, 4 figures, RevTeX

    PCN55 TRANSLATION AND CULTURAL ADAPTATION OF HEALTH UTILITIES INDEX (HUI) FOR ASSESSING EFFECTS OF NEUTROPENIA AMONG PEDIATRIC ONCOLOGY PATIENTS IN TURKEY

    Get PDF

    Surface code quantum computing by lattice surgery

    Full text link
    In recent years, surface codes have become a leading method for quantum error correction in theoretical large scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural 2-dimensional nearest neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect- based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance 3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.Comment: Published version. 29 pages, 18 figure

    Quantum picturalism for topological cluster-state computing

    Full text link
    Topological quantum computing is a way of allowing precise quantum computations to run on noisy and imperfect hardware. One implementation uses surface codes created by forming defects in a highly-entangled cluster state. Such a method of computing is a leading candidate for large-scale quantum computing. However, there has been a lack of sufficiently powerful high-level languages to describe computing in this form without resorting to single-qubit operations, which quickly become prohibitively complex as the system size increases. In this paper we apply the category-theoretic work of Abramsky and Coecke to the topological cluster-state model of quantum computing to give a high-level graphical language that enables direct translation between quantum processes and physical patterns of measurement in a computer - a "compiler language". We give the equivalence between the graphical and topological information flows, and show the applicable rewrite algebra for this computing model. We show that this gives us a native graphical language for the design and analysis of topological quantum algorithms, and finish by discussing the possibilities for automating this process on a large scale.Comment: 18 pages, 21 figures. Published in New J. Phys. special issue on topological quantum computin

    Treatment variation in stent choice in patients with stable or unstable coronary artery disease

    Get PDF
    Aim: Variations in treatment are the result of differences in demographic and clinical factors (e.g. anatomy), but physician and hospital factors may also contribute to treatment variation. The choice of treatment is considered important since it could lead to differences in long-term outcomes. This study explores the associations with stent choice: i.e. drug-eluting stent (DES) versus bare-metal stents (BMS) for Dutch patients diagnosed with stable or unstable coronary artery disease (CAD). Methods & results: Associations with treatment decisions were based on a prospective cohort of 692 patients with stable or unstable CAD. Of those patients, 442 patients were treated with BMS or DES. Multiple logistic regression analyses were performed to identify variables associated with stent choice. Bivariate analyses showed that NYHA class, number of diseased vessels, previous percutaneous coronary intervention, smoking, diabetes, and the treating hospital were associated with stent type. After correcting for other associations the treating hospital remained significantly associated with stent type in the stable CAD population. Conclusions: This study showed that several factors were associated with stent choice. While patients generally appear to receive the most optimal stent given their clinical characteristics, stent choice seems partially determined by the treating hospital, which may lead to differences in longterm outcome
    corecore