3 research outputs found

    The HUSH complex controls brain architecture and protocadherin fidelity

    No full text
    The HUSH (human silencing hub) complex contains the H3K9me3 binding protein M-phase phosphoprotein 8 (MPP8) and recruits the histone methyltransferase SETDB1 as well as Microrchidia CW-type zinc finger protein 2 (MORC2). Functional and mechanistic studies of the HUSH complex have hitherto been centered around SETDB1 while the in vivo functions of MPP8 and MORC2 remain elusive. Here, we show that genetic inactivation of Mphosph8 or Morc2a in the nervous system of mice leads to increased brain size, altered brain architecture, and behavioral changes. Mechanistically, in both mouse brains and human cerebral organoids, MPP8 and MORC2 suppress the repetitive-like protocadherin gene cluster in an H3K9me3-dependent manner. Our data identify MPP8 and MORC2, previously linked to silencing of repetitive elements via the HUSH complex, as key epigenetic regulators of protocadherin expression in the nervous system and thereby brain development and neuronal individuality in mice and humans.ISSN:2375-254

    FIBCD1 is an endocytic GAG receptor associated with a novel neurodevelopmental disorder

    No full text
    Abstract Whole‐exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group‐binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate‐4S (CS‐4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss‐of‐function by disrupting FIBCD1‐CS‐4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor‐related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal‐dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity
    corecore