4,719 research outputs found

    Surface Effects of Flame Spreading over Igniting Composite Solid Propellants Constituents

    Get PDF
    Flame spreading over surface of igniting composite solid propellant constituent

    Regularization of identity based solution in string field theory

    Full text link
    We demonstrate that an Erler-Schnabl type solution in cubic string field theory can be naturally interpreted as a gauge invariant regularization of an identity based solution. We consider a solution which interpolates between an identity based solution and ordinary Erler-Schnabl one. Two gauge invariant quantities, the classical action and the closed string tadpole, are evaluated for finite value of the gauge parameter. It is explicitly checked that both of them are independent of the gauge parameter.Comment: 9 pages, minor typos corrected and references adde

    Realistic Neutrino Opacities for Supernova Simulations With Correlations and Weak Magnetism

    Full text link
    Advances in neutrino transport allow realistic neutrino interactions to be incorporated into supernova simulations. We add tensor couplings to relativistic RPA calculations of neutrino opacities. Our results reproduce free-space neutrino-nucleon cross sections at low density, including weak magnetism and recoil corrections. In addition, our opacities are thermodynamically consistent with relativistic mean field equations of state. We find antineutrino mean free paths that are considerably larger then those for neutrinos. This difference depends little on density. In a supernova, this difference could lead to an average energy of νˉμ\bar\nu_\mu that is larger than that for νμ\nu_\mu by an amount that is comparable to the energy difference between νμ\nu_\mu and νˉe\bar\nu_eComment: 15 pages, 10 figures, submitted to PRC, minor changes to figs. (9,10

    Quenching and Tomography from RHIC to LHC

    Full text link
    We compare fully perturbative and fully nonperturbative pictures of high-pT energy loss calculations to the first results from LHC. While over-suppressed compared to published ALICE data, parameter-free pQCD predictions based on the WHDG energy loss model constrained to RHIC data simultaneously describe well the preliminary CMS hadron suppression, ATLAS charged hadron v2, and ALICE D meson suppression; we also provide for future reference WHDG predictions for B meson RAA. However, energy loss calculations based on AdS/CFT also qualitatively describe well the RHIC pion and non-photonic electron suppression and LHC charged hadron suppression. We propose the double ratio of charm to bottom quark RAA will qualitatively distinguish between these two energy loss pictures.Comment: 4 pages, 3 figures. Proceedings for Quark Matter 201

    Greybody factor for the BTZ black hole and a 5D black hole

    Full text link
    We study the 5D black holes in the type IIB superstring theory compactified on S1×T4S^1 \times T^4. Far from horizon, we have flat space-time. Near horizon, we have AdS3(BTZblackhole)×S3×T4AdS_3(BTZ black hole) \times S^3 \times T^4. We calculate the greybody factor of a minimally coupled scalar by replacing the original geometry(M5×S1×T4M_5 \times S^1 \times T^4) by AdS3×S3×T4AdS_3 \times S^3 \times T^4. In the low-energy scattering, it turns out that the result agrees with the greybody factor of the 5D black hole (or D1 + D5 branes)in the dilute gas approximation. This confirms that the AdSAdS-theory(AdS3×S3×T4AdS_3 \times S^3 \times T^4) contains the essential information about the bulk 5D black holes.Comment: some discussions are added, 15 Pages, No figure, RevTe

    Relativistic analysis of the 208Pb(e,e'p)207Tl reaction at high momentum

    Get PDF
    The recent 208Pb(e,e'p)207Tl data from NIKHEF-K at high missing momentum (p_m>300 MeV/c) are compared to theoretical results obtained with a fully relativistic formalism previously applied to analyze data on the low missing momentum (p_m < 300 MeV/c) region. The same relativistic optical potential and mean field wave functions are used in the two p_m-regions. The spectroscopic factors of the various shells are extracted from the analysis of the low-p_m data and then used in the high-p_m region. In contrast to previous analyses using a nonrelativistic mean field formalism, we do not find a substantial deviation from the mean field predictions other than that of the spectroscopic factors, which appear to be consistent with both low- and high-p_m data. We find that the difference between results of relativistic and nonrelativistic formalisms is enhanced in the p_m<0 region that will be interesting to explore experimentally.Comment: 12 pages, LaTeX+Revtex, included 3 postscript figures. To appear in the Physical Review C (Rapid Communications

    Hamiltonian Derivations of the Generalized Jarzynski Equalities under Feedback Control

    Full text link
    In the presence of feedback control by "Maxwell's demon," the second law of thermodynamics and the nonequilibrium equalities such as the Jarzynski equality need to be generalized. In this paper, we derive the generalized Jarzynski equalities for classical Hamiltonian dynamics based on the Liouville's theorem, which is the same approach as the original proof of the Jarzynski equality [Phys. Rev. Lett. 78, 2690 (1997)]. The obtained equalities lead to the generalizations of the second law of thermodynamics for the Hamiltonian systems in the presence of feedback control.Comment: Proceedings of "STATPHYS - Kolkata VII", November 26-30, 2010, Kolkata, Indi

    Nuclear medium modifications of the NN interaction via quasielastic (p,p\vec p,\vec p ') and (p,n\vec{p},\vec{n}) scattering

    Full text link
    Within the relativistic PWIA, spin observables have been recalculated for quasielastic (p,p\vec p,\vec p ') and (p,n\vec p,\vec n) reactions on a 40^{40}Ca target. The incident proton energy ranges from 135 to 300 MeV while the transferred momentum is kept fixed at 1.97 fm^{-1}. In the present calculations, new Horowitz-Love--Franey relativistic NN amplitudes have been generated in order to yield improved and more quantitative spin observable values than before. The sensitivities of the various spin observables to the NN interaction parameters, such as (1) the presence of the surrounding nuclear medium, (2) a pseudoscalar versus a pseudovector interaction term, and (3) exchange effects, point to spin observables which should preferably be measured at certain laboratory proton energies, in order to test current nuclear models. This study also shows that nuclear medium effects become more important at lower proton energies (\leq 200 MeV). A comparison to the limited available data indicates that the relativistic parametrization of the NN scattering amplitudes in terms of only the five Fermi invariants (the SVPAT form) is questionable.Comment: 10 pages, 6 Postscript figures, uses psfig.sty and article.sty, submitted to Phys. Rev.

    Fate of the Black String Instability

    Get PDF
    Gregory and Laflamme showed that certain nonextremal black strings (and p-branes) are unstable to linearized perturbations. It is widely believed that this instability will cause the black string horizon to classically pinch off and then quantum mechanically separate, resulting in higher dimensional black holes. We argue that this cannot happen. Under very mild assumptions, classical event horizons cannot pinch off. Instead, they settle down to new static black string solutions which are not translationally invariant along the string.Comment: 11 pages, v2: few clarifications and references adde

    Comment on Counting Black Hole Microstates Using String Dualities

    Full text link
    We discuss a previous attempt at a microscopic counting of the entropy of asymptotically flat non-extremal black-holes. This method used string dualities to relate 4 and 5 dimensional black holes to the BTZ black hole. We show how the dualities can be justified in a certain limit, equivalent to a near horizon limit, but the resulting spacetime is no longer asymptotically flat.Comment: 10 pages, harvmac. v(2) typo correcte
    corecore