27 research outputs found

    Cross section measurement of the astrophysically important 17O(p,gamma)18F reaction in a wide energy range

    Get PDF
    The 17O(p,g)18F reaction plays an important role in hydrogen burning processes in different stages of stellar evolution. The rate of this reaction must therefore be known with high accuracy in order to provide the necessary input for astrophysical models. The cross section of 17O(p,g)18F is characterized by a complicated resonance structure at low energies. Experimental data, however, is scarce in a wide energy range which increases the uncertainty of the low energy extrapolations. The purpose of the present work is therefore to provide consistent and precise cross section values in a wide energy range. The cross section is measured using the activation method which provides directly the total cross section. With this technique some typical systematic uncertainties encountered in in-beam gamma-spectroscopy experiments can be avoided. The cross section was measured between 500 keV and 1.8 MeV proton energies with a total uncertainty of typically 10%. The results are compared with earlier measurements and it is found that the gross features of the 17O(p,g)18F excitation function is relatively well reproduced by the present data. Deviation of roughly a factor of 1.5 is found in the case of the total cross section when compared with the only one high energy dataset. At the lowest measured energy our result is in agreement with two recent datasets within one standard deviation and deviates by roughly two standard deviations from a third one. An R-matrix analysis of the present and previous data strengthen the reliability of the extrapolated zero energy astrophysical S-factor. Using an independent experimental technique, the literature cross section data of 17O(p,g)18F is confirmed in the energy region of the resonances while lower direct capture cross section is recommended at higher energies. The present dataset provides a constraint for the theoretical cross sections.Comment: Accepted for publication in Phys. Rev. C. Abstract shortened in order to comply with arxiv rule

    A Zala és befolyói makroszkopikus gerinctelen faunája | On the macroinvertebrate fauna of river Zala and its inflows

    Get PDF
    A Zala és befolyói makroszkopikus gerinctelen faunája kevéssé is-mert, habár számos faunisztikai jellegű gyűjtést végeztek ezen a területen. Dolgozatunkban átfogó irodalmi áttekintést adunk a Zala és befolyói makrogerinctelen faunájáról, illetve saját, 2007-ben végzett faunisztikai felmérésünk eredményeit mutatjuk be. | Although many faunistical investigations were carried out in this area, the aquatic macroinvertebrate fauna of River Zala and its inflows is poorly known. In this paper a compilation is given on the macroinvertebrate fauna of River Zala and its inflows, and the results of own faunistical investigations carried out in 2007 are presented

    The Effects of Hyperacute Serum on the Elements of the Human Subchondral Bone Marrow Niche

    Get PDF
    Mesenchymal stem cells (MSCs) are widely used in laboratory experiments as well as in human cell therapy. Their culture requires animal sera like fetal calf serum (FCS) as essential supplementation; however, animal sera pose a risk for clinical applications. Human blood derivatives, for example, platelet-rich plasma (PRP) releasates, are potential replacements of FCS; however, it is unclear which serum variant has the best effect on the given cell or tissue type. Additionally, blood derivatives are commonly used in musculoskeletal diseases like osteoarthritis (OA) or osteonecrosis as "proliferative agents" for the topical MSC pool. Hyperacute serum (HAS), a new serum derivative, has been designed to approximate the natural coagulation cascade with a single-step, additive-free preparation method. We investigated the effects of HAS on monolayer MSC cultures and in their natural niche, in 3D subchondral bone and marrow explants. Viability measurements, RT-qPCR evaluation for gene expression and flow cytometry for cell surface marker analysis were performed to compare the effects of FCS-, PRP-, or HAS-supplemented culture media. Monolayer MSCs showed significantly higher metabolic activity following 5 days' incubation in HAS, and osteoblast-specific mRNA expression was markedly increased, while cells also retained their MSC-specific cell surface markers. A similar effect was observed on bone and marrow explants, which was further confirmed with confocal microscopy analysis. Moreover, markedly higher bone marrow preservation was observed with histology in case of HAS supplementation compared to FCS. These findings indicate possible application of HAS in regenerative solutions of skeletal diseases like OA or osteonecrosis

    Genetic study of PVC workers

    No full text
    corecore