203 research outputs found
Q fever epidemic in Hungary, April to July 2013
We investigated a Q fever outbreak with human patients showing high fever, respiratory tract symptoms, headache and retrosternal pain in southern Hungary in the spring and summer of 2013. Seventy human cases were confirmed by analysing their serum and blood samples with micro-immunofluorescence test and real-time PCR. The source of infection was a merino sheep flock of 450 ewes, in which 44.6% (25/56) seropositivity was detected by enzyme-linked immunosorbent assay. Coxiella burnetii DNA was detected by real-time PCR in the milk of four of 20 individuals and in two thirds (41/65) of the manure samples. The multispacer sequence typing examination of C. burnetii DNA revealed sequence type 18 in one human sample and two manure samples from the sheep flock. The multilocus variable-number tandem repeat analysis pattern of the sheep and human strains were also almost identical, 4/5-9-3-3-0-5 (Ms23-Ms24-Ms27-Ms28-Ms33-Ms34). It is hypothesised that dried manure and maternal fluid contaminated with C. burnetii was dispersed by the wind from the sheep farm towards the local inhabitants. The manure was eliminated in June and the farm was disinfected in July. The outbreak ended at the end of July 2013
Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals
Epitaxial strain energies of epitaxial films and bulk superlattices are
studied via first-principles total energy calculations using the local-density
approximation. Anharmonic effects due to large lattice mismatch, beyond the
reach of the harmonic elasticity theory, are found to be very important in
Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that
is the elastically soft direction for biaxial expansion of Cu and Ni, but it is
for large biaxial compression of Cu, Ag, and Au. The stability of
superlattices is discussed in terms of the coherency strain and interfacial
energies. We find that in phase-separating systems such as Cu-Ag the
superlattice formation energies decrease with superlattice period, and the
interfacial energy is positive. Superlattices are formed easiest on (001) and
hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the
formation energy of superlattices increases with period, and interfacial
energies are negative. These superlattices are formed easiest on (001) or (110)
and hardest on (111) substrates. For Ni-Au we find a hybrid behavior:
superlattices along and like in phase-separating systems, while for
they behave like in ordering systems. Finally, recent experimental
results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys,
immiscible in the bulk form, are explained in terms of destabilization of the
phase separated state due to lattice mismatch between the substrate and
constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in
Physical Review
Melt analysis of mismatch amplification mutation assays (melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models.
Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA), is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ~50% to ~80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (~100 ng to ~0.1 pg). Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs) and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of Melt-MAMA, which should prove useful to the wider scientific community
Bacillus cereus Spores Release Alanine that Synergizes with Inosine to Promote Germination
spores germinate in the presence of a single germinant, inosine, yet with a significant lag period. spores. spores appear to have developed a unique quorum-sensing feedback mechanism to monitor spore density and to coordinate germination
Molecular Investigations of a Locally Acquired Case of Melioidosis in Southern AZ, USA
Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification
Joint Practice Guidelines for Radionuclide Lymphoscintigraphy for Sentinel Node Localization in Oral/Oropharyngeal Squamous Cell Carcinoma
Involvement of the cervical lymph nodes is the most important prognostic factor for patients with oral/oropharyngeal squamous cell carcinoma (OSCC), and the decision of whether to electively treat patients with clinically negative necks remains a controversial topic. Sentinel node biopsy (SNB) provides a minimally invasive method for determining the disease status of the cervical node basin, without the need for a formal neck dissection. This technique potentially improves the accuracy of histologic nodal staging and avoids overtreating three-quarters of this patient population, minimizing associated morbidity. The technique has been validated for patients with OSCC, and larger-scale studies are in progress to determine its exact role in the management of this patient population. This document is designed to outline the current best practice guidelines for the provision of SNB in patients with early-stage OSCC, and to provide a framework for the currently evolving recommendations for its use. Preparation of this guideline was carried out by a multidisciplinary surgical/nuclear medicine/pathology expert panel under the joint auspices of the European Association of Nuclear Medicine (EANM) Oncology Committee and the Sentinel European Node Trial (SENT) Committee
- …