22 research outputs found

    Test of nuclear level density inputs for Hauser-Feshbach model calculations

    Full text link
    The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe

    Level density of 56^{56}Fe and low-energy enhancement of γ\gamma-strength function

    Full text link
    The 55^{55}Mn(d,n)56(d,n)^{56}Fe differential cross section is measured at Ed=7E_d=7 MeV\@. The 56^{56}Fe level density obtained from neutron evaporation spectra is compared to the level density extracted from the 57^{57}Fe(3(^3He,αγ)56\alpha\gamma)^{56}Fe reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the 56^{56}Fe γ\gamma-strength function is also determined from the first-generation γ\gamma matrix of the Oslo experiment. The good agreement between the past and present results for the γ\gamma-strength function supports the validity of both methods and is consistent with the low-energy enhancement of the γ\gamma strength below ∼4\sim 4 MeV first discovered by the Oslo method in iron and molybdenum isotopes.Comment: 7 pages, 5 figure

    First proton-transfer study of 18F+p resonances relevant for novae

    Get PDF
    The 18F(p,α)15O reaction is the predominant destruction mechanism in novae of the radionuclide F18, a target of γ-ray observatories. Thus, its rate is important for understanding F18 production in novae. We have studied resonances in the 18F+p system by making a measurement of a proton-transfer reaction 18F(d,n). We have observed 15 Ne19 levels, 5 of which are below the proton threshold, including a subthreshold state, which has significant l p=0 strength. Our data provide a direct determination of the spectroscopic strength of these states and new constraints on their spins and parities, thereby resolving a controversy, which involves the 8- and 38-keV resonances. The 18F(p,α)15O reaction rate is reevaluated, which takes the subthreshold resonance and other new information determined in this experiment into account. © 2011 American Physical Society

    Single-nucleon transfer reactions on \u3csup\u3e18\u3c/sup\u3eF

    Get PDF
    Simultaneous measurement of the proton-transfer 18F(d,n) 19Ne and neutron-transfer 18F(d,p)19F reactions were performed with a 18F radioactive beam at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The experiments clarify the nuclear structure of 19Ne near the proton threshold, which is relevant for understanding the rates of proton-induced reactions on 18F in novae. Analogs for several states in the mirror nucleus 19F have not yet been identified in 19Ne, indicating that the level structure of 19Ne in this region is incomplete. We observed 15 levels in 19Ne from the 18F(d,n) 19Ne measurement and 18 levels in 19F from the 18F(d,p)19F measurement. Angular distributions were extracted for all strongly populated states and compared to distorted-wave Born approximation calculations. The angular distributions for all the known states in the two nuclei determined in this work are consistent with their previously assigned spins and parities. The spectroscopic factors determined for these levels in the two nuclei are reported. © 2011 American Physical Society

    Double beta decay: present status

    Full text link
    The present status of double beta decay experiments (including the search for 2β+2\beta^{+}, ECβ+\beta^{+} and ECEC processes) are reviewed. The results of the most sensitive experiments are discussed. Average and recommended half-life values for two-neutrino double beta decay are presented. Conservative upper limits on effective Majorana neutrino mass and the coupling constant of the Majoron to the neutrino are established as <0.75 < 0.75 eV and <gee><1.9⋅10−4<g_{ee} > < 1.9 \cdot 10^{-4}, respectively. Proposals for future double beta decay experiments with a sensitivity for the at the level of (0.01-0.1) eV are considered.Comment: 33 pages included 7 figures and 14 tables; an extended version of the invited talk at 13th Lomonosov Conference of Elementary Particle Physics, 23-29 August, 2007, Moscow, Russi

    Mathematical Model of Plasmid-Mediated Resistance to Ceftiofur in Commensal Enteric Escherichia coli of Cattle

    Get PDF
    Antimicrobial use in food animals may contribute to antimicrobial resistance in bacteria of animals and humans. Commensal bacteria of animal intestine may serve as a reservoir of resistance-genes. To understand the dynamics of plasmid-mediated resistance to cephalosporin ceftiofur in enteric commensals of cattle, we developed a deterministic mathematical model of the dynamics of ceftiofur-sensitive and resistant commensal enteric Escherichia coli (E. coli) in the absence of and during parenteral therapy with ceftiofur. The most common treatment scenarios including those using a sustained-release drug formulation were simulated; the model outputs were in agreement with the available experimental data. The model indicated that a low but stable fraction of resistant enteric E. coli could persist in the absence of immediate ceftiofur pressure, being sustained by horizontal and vertical transfers of plasmids carrying resistance-genes, and ingestion of resistant E. coli. During parenteral therapy with ceftiofur, resistant enteric E. coli expanded in absolute number and relative frequency. This expansion was most influenced by parameters of antimicrobial action of ceftiofur against E. coli. After treatment (>5 weeks from start of therapy) the fraction of ceftiofur-resistant cells among enteric E. coli, similar to that in the absence of treatment, was most influenced by the parameters of ecology of enteric E. coli, such as the frequency of transfer of plasmids carrying resistance-genes, the rate of replacement of enteric E. coli by ingested E. coli, and the frequency of ceftiofur resistance in the latter
    corecore