1,601 research outputs found

    Turbulence generation in homogeneous particle-laden flows

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76730/1/AIAA-1998-240-706.pd

    Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    Get PDF
    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure

    Selective interlayer ferromagnetic coupling between the Cu spins in YBa2_2 Cu3_3 O7x_{7-x} grown on top of La0.7_{0.7} Ca0.3_{0.3} MnO3_3

    Full text link
    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2_2 Cu3_3 O7x_{7-x} (YBCO) superconductor when it is grown on top of ferromagnetic La0.7_{0.7} Ca0.3_{0.3} MnO3_3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La0.7_{0.7} Ca0.3_{0.3} interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2_2 plane at the La0.7_{0.7} Ca0.3_{0.3} and MnO2_2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different from the published versio

    Spontaneous Crystallization of Skyrmions and Fractional Vortices in the Fast-rotating and Rapidly-quenched Spin-1 Bose-Einstein Condensates

    Full text link
    We investigate the spontaneous generation of crystallized topological defects via the combining effects of fast rotation and rapid thermal quench on the spin-1 Bose-Einstein condensates. By solving the stochastic projected Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a hexagonal lattice of skyrmions, and a square lattice of half-quantized vortices can be formed in a ferromagnetic and antiferromagnetic spinor BEC, respetively, which can be imaged by using the polarization-dependent phase-contrast method

    Stationary wave patterns generated by an impurity moving with supersonic velocity through a Bose-Einstein condensate

    Get PDF
    Formation of stationary 3D wave patterns generated by a small point-like impurity moving through a Bose-Einstein condensate with supersonic velocity is studied. Asymptotic formulae for a stationary far-field density distribution are obtained. Comparison with three-dimensional numerical simulations demonstrates that these formulae are accurate enough already at distances from the obstacle equal to a few wavelengths.Comment: 7 pages, 3 figure

    Speeding up Simplification of Polygonal Curves using Nested Approximations

    Full text link
    We develop a multiresolution approach to the problem of polygonal curve approximation. We show theoretically and experimentally that, if the simplification algorithm A used between any two successive levels of resolution satisfies some conditions, the multiresolution algorithm MR will have a complexity lower than the complexity of A. In particular, we show that if A has a O(N2/K) complexity (the complexity of a reduced search dynamic solution approach), where N and K are respectively the initial and the final number of segments, the complexity of MR is in O(N).We experimentally compare the outcomes of MR with those of the optimal "full search" dynamic programming solution and of classical merge and split approaches. The experimental evaluations confirm the theoretical derivations and show that the proposed approach evaluated on 2D coastal maps either shows a lower complexity or provides polygonal approximations closer to the initial curves.Comment: 12 pages + figure

    Surface Versus Bulk Dirac States Tuning in a Three-Dimensional Topological Dirac Semimetal

    Full text link
    Recently, crystalline-symmetry-protected three-dimensional (3D) bulk Dirac semimetal phase has been experimentally identified in a stoichiometric high-mobility compound, Cd3As2. The Dirac state observed in Cd3As2 has been attributed to originate mostly from the bulk state while calculations show that the bulk and surface states overlap over the entire Dirac dispersion energy range. In this study, we unambiguously reveal doping induced evolution of the ground state of surface and bulk electron dynamics in a 3D Dirac semimetal. We develop a systematic technique to isolate the surface and bulk states in Cd3As2, by simultaneously utilizing angle-resolved photoemission spectroscopy (ARPES) and in-situ surface deposition. Our experimental results provide a method for tuning the chemical potential as well as to observe surface states degenerate with bulk states, which will be useful for future applications of 3D Dirac semimetal.Comment: 5 pages, 4 figure

    Targeting the ALS/FTD-associated A-DNA kink with anthracene-based metal complex causes DNA backbone straightening and groove contraction

    Get PDF
    The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA-DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA-DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a 'hot-spot' for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA

    Type-II Topological Dirac Semimetals: Theory and Materials Prediction (VAl3 family)

    Full text link
    The discoveries of Dirac and Weyl semimetal states in spin-orbit compounds led to the realizations of elementary particle analogs in table-top experiments. In this paper, we propose the concept of a three-dimensional type-II Dirac fermion and identify a new topological semimetal state in the large family of transition-metal icosagenides, MA3 (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node consists of four type-II Weyl nodes with chiral charge +/-1 via symmetry breaking. Furthermore, we predict the Landau level spectrum arising from the type-II Dirac fermions in VAl3 that is distinct from that of known Dirac semimetals. We also show a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions. The new type-II Dirac fermions, their novel magneto-transport response, the topological tunability and the large number of compounds make VAl3 an exciting platform to explore the wide-ranging topological phenomena associated with Lorentz-violating Dirac fermions in electrical and optical transport, spectroscopic and device-based experiments.Comment: 28 pages, 7 Figure
    corecore