3,958 research outputs found

    Play it Again: Evolved Audio Effects and Synthesizer Programming

    Get PDF
    Automatic programming of sound synthesizers and audio devices to match a given, desired sound is examined and a Genetic Algorithm (GA) that functions independent of specific synthesis techniques is proposed. Most work in this area has focused on one synthesis model or synthesizer, designing the GA and tuning the operator parameters to obtain optimal results. The scope of such inquiries has been limited by available computing power, however current software (Ableton Live, herein) and commercially available hardware is shown to quickly find accurate solutions, promising a practical application for music creators. Both software synthesizers and audio effects processors are examined, showing a wide range of performance times (from seconds to hours) and solution accuracy, based on particularities of the target devices. Random oscillators, phase synchronizing, and filters over empty frequency ranges are identified as primary challenges for GA based optimization

    Winds of Planet Hosting Stars

    Get PDF
    The field of exoplanetary science is one of the most rapidly growing areas of astrophysical research. As more planets are discovered around other stars, new techniques have been developed that have allowed astronomers to begin to characterise them. Two of the most important factors in understanding the evolution of these planets, and potentially determining whether they are habitable, are the behaviour of the winds of the host star and the way in which they interact with the planet. The purpose of this project is to reconstruct the magnetic fields of planet hosting stars from spectropolarimetric observations, and to use these magnetic field maps to inform simulations of the stellar winds in those systems using the Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) code. The BATS-R-US code was originally written to investigate the behaviour of the Solar wind, and so has been altered to be used in the context of other stellar systems. These simulations will give information about the velocity, pressure and density of the wind outward from the host star. They will also allow us to determine what influence the winds will have on the space weather environment of the planet. This paper presents the preliminary results of these simulations for the star Ï„\tau Bo\"otis, using a newly reconstructed magnetic field map based on previously published observations. These simulations show interesting structures in the wind velocity around the star, consistent with the complex topology of its magnetic field.Comment: 8 pages, 2 figures, accepted for publication in the peer-reviewed proceedings of the 14th Australian Space Research Conference, held at the University of South Australia, 29th September - 1st October 201

    The WARPS Survey. VIII. Evolution of the Galaxy Cluster X-ray Luminosity Function

    Full text link
    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 10E-15 erg/s/cm2, with members out to redshift z ~ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ~ 1.1, as expected in a low density Universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95% level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ~ 2 10E42 erg/s compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.Comment: 13 pages, 12 figures, accepted for publication in MNRA

    Spin-glass model with partially annealed asymmetric bonds

    Full text link
    We have considered the two-spin interaction spherical spin-glass model with asymmetric bonds (coupling constants). Besides the usual interactions between spins and bonds and between the spins and a thermostat with temperature TσT_{\sigma} there is also an additional factor: the bonds are not assumed random {\it a priori} but interact with some other thermostat at the temperature TJT_{J}. We show that when the bonds are frozen with respect to the spins a first order phase transition to a spin-glass phase occurs, and the temperature of this transition tends to zero if TJT_J is large. Our analytical results show that a spin-glass phase can exist in mean-field models with nonrelaxational dynamics.Comment: 10 pages, late

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Hydraulic Fracturing and Shale Gas Production: Technology, Impacts, and Regulations

    Full text link

    Cool Jupiters greatly outnumber their toasty siblings : Occurrence rates from the Anglo-Australian Planet Search

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2019 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual - but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine the abundance of 'cool Jupiters' - analogues to the Solar system's giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters.We find that the occurrence rate of such 'cool Jupiters' is 6.73 +2.09 -1.13 per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at 0.84 +0.70 -0.20 per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ~1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system's place in the cosmos.Peer reviewe

    Developing and testing a strategy to enhance a palliative approach and care continuity for people who have dementia: Study overview and protocol

    Get PDF
    Background: Typically, dementia involves progressive cognitive and functional deterioration, leading to death. A palliative approach recognizes the inevitable health decline, focusing on quality of life. The approach is holistic, proactive, supports the client and the family, and can be provided by the client’s usual care team. In the last months of life, distressing symptoms, support needs, and care transitions may escalate. This project trialed a strategy intended to support a consistent, high quality, palliative approach for people with dementia drawing close to death. The strategy was to implement two communities of practice, drawn primarily from service provider organizations across care sectors, supporting them to address practice change. Communities comprised practitioners and other health professionals with a passionate commitment to dementia palliative care and the capacity to drive practice enhancement within partnering organizations. Project aims were to document: (i) changes driven by the communities of practice; (ii) changes in staff/practitioner characteristics during the study (knowledge of a palliative approach and dementia; confidence delivering palliative care; views on death and dying, palliative care, and a palliative approach for dementia); (iii) outcomes from perspectives of family carers, care providers, and community of practice members; (iv) the extent to which changes enhanced practice and care continuity; and (v) barriers to and facilitators of successful community of practice implementation. Methods/design: This action research project was implemented over 14 months in 2010/11 in metropolitan Perth, Western Australia and regional Launceston, Tasmania. Each state based community of practice worked with the researchers to scope existing practice and its outcomes. The research team compiled a report of existing practice recommendations and resources. Findings of these two steps informed community of practice action plans and development of additional resources. Change implementation was recorded and explored in interviews, comparisons being made with practice recommendations. Changes in staff/practitioner characteristics were evaluated using survey data. Findings from semi structured interviews and survey administration established outcomes from perspectives of family carers, care providers, and community of practice members. Consideration of processes and outcomes, across the two state based settings, informed identification of barriers and facilitators. Community of practice reflections also informed study recommendations

    Observing Strategies for the Detection of Jupiter Analogs

    Get PDF
    To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage-rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show that no noise floor is reached, with a continuing improvement in detectability at the maximum number of observations N = 500 tested here.Peer reviewe
    • …
    corecore