22 research outputs found

    The Dynamical History of Chariklo and its Rings

    Get PDF
    Chariklo is the only small Solar system body confirmed to have rings. Given the instability of its orbit, the presence of rings is surprising, and their origin remains poorly understood. In this work, we study the dynamical history of the Chariklo system by integrating almost 36,000 Chariklo clones backwards in time for one Gyr under the influence of the Sun and the four giant planets. By recording all close encounters between the clones and planets, we investigate the likelihood that Chariklo's rings could have survived since its capture to the Centaur population. Our results reveal that Chariklo's orbit occupies a region of stable chaos, resulting in its orbit being marginally more stable than those of the other Centaurs. Despite this, we find that it was most likely captured to the Centaur population within the last 20 Myr, and that its orbital evolution has been continually punctuated by regular close encounters with the giant planets. The great majority (> 99%) of those encounters within one Hill radius of the planet have only a small effect on the rings. We conclude that close encounters with giant planets have not had a significant effect on the ring structure. Encounters within the Roche limit of the giant planets are rare, making ring creation through tidal disruption unlikely

    The Kilodegree Extremely Little Telescope: searching for transiting exoplanets in the Northern and Southern Sky

    Get PDF
    The Kilodegree Extremely Little Telescope (KELT) survey is a ground-based program designed to search for transiting exoplanets orbiting relatively bright stars. To achieve this, the KELT Science Team operates two planet search facilities - KELT-North, at Winer Observatory, Arizona, and KELT-South, at the South African Astronomical Observatory. The telescopes used at these observatories have particularly wide fields of view, allowing KELT to study a large number of potential exoplanet host stars. One of the major advantages of targeting bright stars is that the exoplanet candidates detected can be easily followed up by small, ground-based observatories distributed around the world. This paper will provide a brief overview of the KELT-North and KELT-South surveys, the follow-up observations performed by the KELT Follow-up Collaboration, and the exoplanet discoveries confirmed thus far, before concluding with a brief discussion of the future for the KELT program

    2001 QR322 – an update on Neptune’s first unstable Trojan companion

    Get PDF
    The Neptune Trojans are the most recent addition to the panoply of Solar system small body populations. The orbit of the first discovered member, 2001 QR322, was investigated shortly after its discovery, based on early observations of the object, and it was found to be dynamically stable on timescales comparable to the age of the Solar system. As further observations were obtained of the object over the following years, the best-fit solution for its orbit changed. We therefore carried out a new study of 2001 QR322’s orbit in 2010, finding that it lay on the boundary between dynamically stable and unstable regions in Neptune’s Trojan cloud, and concluding that further observations were needed to determine the true stability of the object’s orbit. Here we follow up on that earlier work, and present the preliminary results of a dynamical study using an updated fit to 2001 QR322’s orbit. Despite the improved precision with which the orbit of 2001 QR322 is known, we find that the best-fit solution remains balanced on a knife-edge, lying between the same regions of stability and instability noted in our earlier work. In the future, we intend to carry out new observations that should hopefully refine the orbit to an extent that its true nature can finally be disentangled

    Towards a dynamics-based estimate of the extent of HR 8799’s unresolved warm debris belt

    Get PDF
    In many ways, the HR 8799 planetary system resembles our Solar system more closely than any other discovered to date – albeit significantly younger, and on a larger and more dramatic scale. The system features four giant planets and two debris belts. The first of these belts lies beyond the orbit of the outermost planet, and mirrors the location of our Solar system’s Edgeworth-Kuiper belt. The second, which has yet to be fully observationally characterised, lies interior to the orbit of the innermost known planet, HR8799 e, and is an analogue to our Asteroid Belt. With such a similar architecture, the system is a valuable laboratory for examining exoplanetary dynamics, and the interaction between debris disks and giant planets. In recent years, significant progress has been made in the characterisation of the outer of HR8799’s debris disks, primarily using the Herschel Space Observatory. In contrast, the inner disk, which lies too close to its host star to be spatially resolved by that instrument, remains poorly understood. This, in turn, leaves significant questions over both the location of the planetesimals responsible for producing the observed dust, and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's supercomputing facility, Katana. In this work, we present the results of integrations following the evolution of a belt of dynamically hot debris interior to the innermost planet, HR8799 e, for a period of 60 million years, using an initial population of 500,000 massless test particles. These simulations have enabled the characterisation of the extent and structure of the inner belt, revealing that its outer edge must lie interior to the 3:1 mean-motion resonance with HR8799 e, at approximately 7.5 au, and highlighting the presence of fine structure analogous to the Solar system’s Kirkwood gaps. In the future, our results will also allow us to calculate a first estimate of the small-body impact rate and water delivery prospects for any potential terrestrial planet(s) that might lurk, undetected, in the inner system

    Measuring the severity of close encounters between ringed small bodies and planets

    Get PDF
    Rings have recently been discovered around the trans-Neptunian object (TNO) 136108 Haumea and the Centaur 10199 Chariklo. Rings are also suspected around the Centaur 2060 Chiron. As planetary close encounters with ringed small bodies can affect ring longevity, we previously measured the severity of such encounters of Chariklo and Chiron using the minimum encounter distance, dmin. The value of dmin that separates noticeable encounters from non-noticeable encounters we called the ‘ring limit’, R. R was then approximated as 10 tidal disruption distances, 10Rtd. In this work, we seek to find analytical expressions for R that fully account for the effects of the planet mass, small body mass, ms, ring orbital radius, r, and velocity at infinity, v∞, for fictitious ringed Centaurs using ranges 2 × 1020 kg ≤ms≤ 1 Pluto mass and 25 000 ≤r ≤ 100 000 km. To accomplish this, we use numerical integration to simulate close encounters between each giant planet and ringed Centaurs in the three-body planar problem. The results show that R has a lower bound of approximately 1.8Rtd. We compare analytical and experimental R values for a fictitious Haumea, Chariklo, and Chiron with r= 50 000 km. The agreement is excellent for Haumea, but weaker for Chariklo and Chiron. The agreement is best for Jupiter and Saturn. The ring limits of the real Haumea, Chariklo, and Chiron are <4Rtd. Experimental R values for the fictitious bodies make better approximations for the R values of the real bodies than does 10Rtd. Analytical values make good first approximations

    The dynamical structure of HR 8799’s inner debris disk

    Get PDF
    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 million years. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water deliver

    Resolving debris discs in the far-infrared: early highlights from the DEBRIS survey

    Get PDF
    We present results from the earliest observations of DEBRIS, a Herschel Key Programme to conduct a volume- and flux-limited survey for debris discs in A-type through M-type stars. PACS images (from chop/nod or scan-mode observations) at 100 and 160 micron are presented toward two A-type stars and one F-type star: beta Leo, beta UMa and eta Corvi. All three stars are known disc hosts. Herschel spatially resolves the dust emission around all three stars (marginally, in the case of beta UMa), providing new information about discs as close as 11 pc with sizes comparable to that of the Solar System. We have combined these data with existing flux density measurements of the discs to refine the SEDs and derive estimates of the fractional luminosities, temperatures and radii of the discs.Comment: to be published in A&A, 5 pages, 2 color figure

    The fundamental connections between the Solar System and exoplanetary science

    Get PDF
    Over the past several decades, thousands of planets have been discovered outside our Solar System. These planets exhibit enormous diversity, and their large numbers provide a statistical opportunity to place our Solar System within the broader context of planetary structure, atmospheres, architectures, formation, and evolution. Meanwhile, the field of exoplanetary science is rapidly forging onward toward a goal of atmospheric characterization, inferring surface conditions and interiors, and assessing the potential for habitability. However, the interpretation of exoplanet data requires the development and validation of exoplanet models that depend on in situ data that, in the foreseeable future, are only obtainable from our Solar System. Thus, planetary and exoplanetary science would both greatly benefit from a symbiotic relationship with a two way flow of information. Here, we describe the critical lessons and outstanding questions from planetary science, the study of which are essential for addressing fundamental aspects for a variety of exoplanetary topics. We outline these lessons and questions for the major categories of Solar System bodies, including the terrestrial planets, the giant planets, moons, and minor bodies. We provide a discussion of how many of these planetary science issues may be translated into exoplanet observables that will yield critical insight into current and future exoplanet discoveries

    The GALAH Survey: Chemical Clocks

    Full text link
    Previous studies have found that the elemental abundances of a star correlate directly with its age and metallicity. Using this knowledge, we derive ages for a sample of 250,000 stars taken from GALAH DR3 using only their overall metallicity and chemical abundances. Stellar ages are estimated via the machine learning algorithm XGBoostXGBoost, using main sequence turnoff stars with precise ages as our input training set. We find that the stellar ages for the bulk of the GALAH DR3 sample are accurate to 1-2 Gyr using this method. With these ages, we replicate many recent results on the age-kinematic trends of the nearby disk, including the age-velocity dispersion relationship of the solar neighborhood and the larger global velocity dispersion relations of the disk found using GaiaGaia and GALAH. The fact that chemical abundances alone can be used to determine a reliable age for a star have profound implications for the future study of the Galaxy as well as upcoming spectroscopic surveys. These results show that the chemical abundance variation at a given birth radius is quite small, and imply that strong chemical tagging of stars directly to birth clusters may prove difficult with our current elemental abundance precision. Our results highlight the need of spectroscopic surveys to deliver precision abundances for as many nucleosynthetic production sites as possible in order to estimate reliable ages for stars directly from their chemical abundances. Applying the methods outlined in this paper opens a new door into studies of the kinematic structure and evolution of the disk, as ages may potentially be estimated for a large fraction of stars in existing spectroscopic surveys. This would yield a sample of millions of stars with reliable age determinations, and allow precise constraints to be put on various kinematic processes in the disk, such as the efficiency and timescales of radial migration.Comment: 13 pages, 15 figures, submitted to MNRA
    corecore