2,471 research outputs found

    Radiation and shielding study for the International Ultraviolet Explorer

    Get PDF
    Technical advisory services to ensure integrity of parts and material exposed to energetic particle radiation for the IUE scientific instruments, spacecraft, and subsystems are provided. A significant potential for interference, degradation, or failure for unprotected or sensitive items was found. Vulnerable items were identified, and appropriate tests, changes, and shields were defined

    Perturbations in the Kerr-Newman Dilatonic Black Hole Background: Maxwell Waves, the Dilaton Background and Gravitational Lensing

    Full text link
    In this paper we continue the analysis of our previous papers and study the affect of the existence of a non-trivial dilaton background on the propagation of electromagnetic waves in the Kerr-Newman dilatonic black hole space-time. For this purpose we again employ the double expansion in both the background electric charge and the wave parameters of the relevant quantities in the Newman-Penrose formalism and then identify the first order at which the dilaton background enters the Maxwell equations. We then assume that gravitational and dilatonic waves are negligible (at that order in the charge parameter) with respect to electromagnetic waves and argue that this condition is consistent with the solutions already found in the previous paper. Explicit expressions are given for the asymptotic behavior of scattered waves, and a simple physical model is proposed in order to test the effects. An expression for the relative intensity is obtained for Reissner-Nordstrom dilaton black holes using geometrical optics. A comparison with the approximation of geometrical optics for Kerr-Newman dilaton black holes shows that at the order to which the calculations are carried out gravitational lensing of optical images cannot probe the dilaton background.Comment: 9 pages, 1 figur

    Non-Singular Charged Black Hole Solution for Non-Linear Source

    Get PDF
    A non-singular exact black hole solution in General Relativity is presented. The source is a non-linear electromagnetic field, which reduces to the Maxwell theory for weak field. The solution corresponds to a charged black hole with |q| \leq 2s_c m \approx 0.6 m, having metric, curvature invariants, and electric field bounded everywhere.Comment: 3 pages, RevTe

    Quantum Holonomy in Three-dimensional General Covariant Field Theory and Link Invariant

    Full text link
    We consider quantum holonomy of some three-dimensional general covariant non-Abelian field theory in Landau gauge and confirm a previous result partially proven. We show that quantum holonomy retains metric independence after explicit gauge fixing and hence possesses the topological property of a link invariant. We examine the generalized quantum holonomy defined on a multi-component link and discuss its relation to a polynomial for the link.Comment: RevTex, 12 pages. The metric independence of path integral measure is justified and the case of multi-component link is discussed in detail. To be published in Physical Review

    Entanglement and State Preparation

    Full text link
    When a subset of particles in an entangled state is measured, the state of the subset of unmeasured particles is determined by the outcome of the measurement. This first measurement may be thought of as a state preparation for the remaining particles. In this paper, we examine how the duration of the first measurement effects the state of the unmeasured subsystem. The state of the unmeasured subsytem will be a pure or mixed state depending on the nature of the measurement. In the case of quantum teleportation we show that there is an eigenvalue equation which must be satisfied for accurate teleportation. This equation provides a limitation to the states that can be accurately teleported.Comment: 24 pages, 3 figures, submitted to Phys. Rev.

    Evaporation and Fate of Dilatonic Black Holes

    Get PDF
    We study both spherically symmetric and rotating black holes with dilaton coupling and discuss the evaporation of these black holes via Hawking's quantum radiation and their fates. We find that the dilaton coupling constant α\alpha drastically affects the emission rates, and therefore the fates of the black holes. When the charge is conserved, the emission rate from the non-rotating hole is drastically changed beyond α=1\alpha = 1 (a superstring theory) and diverges in the extreme limit. In the rotating cases, we analyze the slowly rotating black hole solution with arbitrary α\alpha as well as three exact solutions, the Kerr--Newman (α=0\alpha = 0), and Kaluza--Klein (α=3\alpha = \sqrt{3}), and Sen black hole (α=1\alpha = 1 and with axion field). Beyond the same critical value of α1\alpha \sim 1, the emission rate becomes very large near the maximally charged limit, while for α<1\alpha<1 it remains finite. The black hole with α>1\alpha > 1 may evolve into a naked singularity due to its large emission rate. We also consider the effects of a discharge process by investigating superradiance for the non-rotating dilatonic black hole.Comment: 33 pages, LaTex, 14 postscript figure files (appended as a uuencoded compressed tar file

    Texas Guide for Controlling Insects and Diseases on Fruits and Nuts.

    Get PDF
    7 p

    Semiclassical Extremal Blackholes

    Get PDF
    Extremal black holes are studied in a two dimensional model motivated by a dimensional reduction from four dimensions. Their quantum corrected geometry is calculated semiclassically and a mild singularity is shown to appear at the horizon. Extensions of the geometry past the horizon are not unique but there are continuations free from malevolent singularities. A few comments are made about the relevance of these results to four dimensions and to the study of black hole entropy and information loss.Comment: 16 pages, 2 figures upon request, CALT-68-1833 - (new version corrects omissions in previous list of references

    Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

    Get PDF
    Abstract Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21-24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L\u3e5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors and the importance of chorus-driven local acceleration even during the nonstorm times
    corecore