7 research outputs found

    The Role of Fault-Zone Architectural Elements on Pore Pressure Propagation and Induced Seismicity

    Get PDF
    We used hydrogeologic models to assess how fault‐zone properties promote or inhibit the downward propagation of fluid overpressures from a basal reservoir injection well (150 m from fault zone, Q = 5000 m3/day) into the underlying crystalline basement rocks. We varied the permeability of the fault‐zone architectural components and a crystalline basement weathered layer as part of a numerical sensitivity study. Realistic conduit‐barrier style fault zones effectively transmit elevated pore pressures associated with 4 years of continuous injection to depths of approximately 2.5 km within the crystalline basement while compartmentalizing fluid flow within the injection reservoir. The presence of a laterally continuous, relatively low‐permeability altered/weathered basement horizon (kaltered layer = 0.1 × kbasement) can limit the penetration depth of the pressure front to approximately 500 m. On the other hand, the presence of a discontinuous altered/weathered horizon that partially confines the injection reservoir without blocking the fault fluid conduit promotes downward propagation of pressures. Permeability enhancement via hydromechanical failure was found to increase the depth of early‐time pressure front migration by a factor of 1.3 to 1.85. Dynamic permeability models may help explain seismicity at depths of greater than 10 km such as is observed within the Permian Basin, NM

    Imaging shallow gas migration pathways in a mud‐volcano province using an autonomous underwater vehicle (Malta Plateau, Mediterranean Sea)

    No full text
    Data acquired by an autonomous underwater vehicle (AUV) towing a source (1600–3500 Hz) and a horizontal array of hydrophones have been analysed to image discrete, isolated or even a small cluster of scatterers within the sediment, to determine shallow migration paths of hydrocarbons in a mud volcano system of the Malta Plateau. An algorithm based on a semblance function was applied to the acoustic data to highlight scatterers rather than interface reflections. The resulting scatterer map, obtained along the AUV track, generated a pseudo‐three‐dimensional coverage of the study area, with a horizontal and vertical resolution of roughly 3–5 m and 5–10 m, respectively. This map was combined with high‐resolution bathymetric and backscattering seafloor maps obtained from previous explorations. This integrated dataset provides new evidence for the role of fault zones as a preferential path for gas/fluid migration and reveals the intermittent activity of seeping gas. The data show, in particular, that gas bubble slugs, i.e. discontinuous gas columns, rise through Plio‐Quaternary sediments along a complex system of conduits terminating at the surface into quiescent mud volcanoes. The gas flux is facilitated by the regional stress field that results in dilatant conditions on the mapped fault zones
    corecore