89 research outputs found

    Femtosecond Photoelectron Imaging of Anions

    Get PDF
    Several recent results of a time-resolved photoelectron imaging experiment are presented. Following a broad introduction into the area of femtochemistry and time-resolved photoelectron spectroscopy, a detailed description of the spec- trometer is given. This utilises an electrospray ionisation source, coupled to an electrostatic ion trap. Ions are mass selected using time-of-flight methods and investigated using photoelectron imaging in a velocity-mapping geometry. Ultrafast dynamics are investigated by pump-probe spectroscopy with femtosec- ond laser pulses. Recent results are separated into three distinct projects: (i) The investigation of electron acceptor radical anions based on the quinone backbone. These commonly exhibit electron transfer rates exceeding those pre- dicted by Marcus theory by orders of magnitude. We show that an alternative pathway to electron transfer could involve the participation of electronic excited states, as these couple strongly to the anion ground state. Specifically, for p- Benzoquinone we show that electronic resonances located in the detachment continuum primarily undergo internal conversion via a number of conical inter- sections. (ii) Several polyanions have been investigated in the gas-phase. These systems exhibit unusual electronic properties, due to the presence of multiple excess charges, leading to the formation of a repulsive Coulomb barrier to photode- tachment. We investigate the effect of excess internal energy on this barrier and how it affects outgoing photoelectrons. We show that the trajectories of electrons are strongly influenced by this potential and demonstrate its use as a probe for large amplitude structural dynamics in polyanions. (iii) The isolated chromophore of the green fluorescent protein (GFP) has been studied, and the vertical and adiabatic detachment energies determined for the first time. Using time-resolved spectroscopy the excited state dynamics are in- vestigated. We show that the first singlet excited state of the anion primarily decays through internal conversion, explaining the absence of fluorescence in the gas-phase. Using high level quantum chemistry calculations we show the specific motion involved and hence confirm the function of the protein back- bone in GFP. This thesis is concluded with a few suggested experimental improvements and ideas for future studies of anions using the presented spectrometer

    Characterizing gas flow from aerosol particle injectors

    Full text link
    A novel methodology for measuring gas flow from small orifices or nozzles into vacuum is presented. It utilizes a high-intensity femtosecond laser pulse to create a plasma within the gas plume produced by the nozzle, which is imaged by a microscope. Calibration of the imaging system allows for the extraction of absolute number densities. We show detection down to helium densities of 4×10164\times10^{16}~cm3^{-3} with a spatial resolution of a few micrometer. The technique is used to characterize the gas flow from a convergent-nozzle aerosol injector [Struct.\ Dyn.~2, 041717 (2015)] as used in single-particle diffractive imaging experiments at free-electron laser sources. Based on the measured gas-density profile we estimate the scattering background signal under typical operating conditions of single-particle imaging experiments and estimate that fewer than 50 photons per shot can be expected on the detector

    Optimizing aerodynamic lenses for single-particle imaging

    Full text link
    A numerical simulation infrastructure capable of calculating the flow of gas and the trajectories of particles through an aerodynamic lens injector is presented. The simulations increase the fundamental understanding and predict optimized injection geometries and parameters. Our simulation results were compared to previous reports and also validated against experimental data for 500 nm polystyrene spheres from an aerosol-beam- characterization setup. The simulations yielded a detailed understanding of the radial phase-space distribution and highlighted weaknesses of current aerosol injectors for single-particle diffractive imaging. With the aid of these simulations we developed new experimental implementations to overcome current limitations

    Spatially separated polar samples of the cis and trans conformers of 3-fluorophenol

    Full text link
    We demonstrate the spatial separation of the cis- and trans-conformers of 3-fluorophenol in the gas phase based on their distinct electric dipole moments. For both conformers we create very polar samples of their lowest-energy rotational quantum states. A >95 % pure beam of trans-3-fluorophenol and a >90 % pure beam of the lowest-energy rotational states of the less polar cis-3-fluorophenol were obtained for helium and neon supersonic expansions, respectively. This is the first demonstration of the spatial separation of the lowest-energy rotational states of the least polar conformer, which is necessary for strong alignment and orientation of all individual conformers.Comment: 5 pages, 5 figure

    Spatially-controlled complex molecules and their applications

    Full text link
    The understanding of molecular structure and function is at the very heart of the chemical and molecular sciences. Experiments that allow for the creation of structurally pure samples and the investigation of their molecular dynamics and chemical function have developed tremendously over the last few decades, although "there's plenty of room at the bottom" for better control as well as further applications. Here, we describe the use of inhomogeneous electric fields for the manipulation of neutral molecules in the gas-phase, \ie, for the separation of complex molecules according to size, structural isomer, and quantum state. For these complex molecules, all quantum states are strong-field seeking, requiring dynamic fields for their confinement. Current applications of these controlled samples are summarised and interesting future applications discussed.Comment: Accepted by Int. Rev. Phys. Che

    Development and characterization of a laser-induced acoustic desorption source

    Full text link
    A laser-induced acoustic desorption source, developed for use at central facilities, such as free-electron lasers, is presented. It features prolonged measurement times and a fixed interaction point. A novel sample deposition method using aerosol spraying provides a uniform sample coverage and hence stable signal intensity. Utilizing strong-field ionization as a universal detection scheme, the produced molecular plume is characterized in terms of number density, spatial extend, fragmentation, temporal distribution, translational velocity, and translational temperature. The effect of desorption laser intensity on these plume properties is evaluated. While translational velocity is invariant for different desorption laser intensities, pointing to a non-thermal desorption mechanism, the translational temperature increases significantly and higher fragmentation is observed with increased desorption laser fluence.Comment: 8 pages, 7 figure

    Characterizing and optimizing a laser-desorption molecular beam source

    Full text link
    The design and characterization of a new laser-desorption molecular beam source, tailored for use in x-ray-free-electron-laser and ultrashort-pulse-laser imaging experiments, is presented. It consists of a single mechanical unit containing all source components, including the molecular-beam valve, the sample, and the fiber-coupled desorption laser, which is movable in five axes, as required for experiments at central facilities. Utilizing strong-field ionization, we characterize the produced molecular beam and evaluate the influence of desorption laser pulse energy, relative timing of valve opening and desorption laser, sample bar height, and which part of the molecular packet is probed on the sample properties. Strong-field ionization acts as a universal probe and allows to detect all species present in the molecular beam, and hence enables us to analyze the purity of the produced molecular beam, including molecular fragments. We present optimized experimental parameters for the production of the purest molecular beam, containing the highest yield of intact parent ions, which we find to be very sensitive to the placement of the desorbed-molecules plume within the supersonic expansion

    Visualizing aerosol-particle injection for diffractive-imaging experiments

    Full text link
    Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing the amount of time and sample consumed during measurements. We have developed in-situ non-destructive imaging diagnostics to aid real-time particle injector optimization and x-ray/particle-beam alignment, based on laser illumination schemes and fast imaging detectors. Our diagnostics are constructed to provide a non-invasive rapid feedback on injector performance during measurements, and have been demonstrated during diffraction measurements at the FLASH free-electron laser.Comment: 15 page
    corecore