1,172 research outputs found
Fluidized bed combustor modeling
A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested
Electronic structure reconstruction by orbital symmetry breaking in IrTe2
We report an angle-resolved photoemission spectroscopy (ARPES) study on IrTe2
which exhibits an interesting lattice distortion below 270 K and becomes
triangular lattice superconductors by suppressing the distortion via chemical
substitution or intercalation. ARPES results at 300 K show multi-band Fermi
surfaces with six-fold symmetry which are basically consistent with band
structure calculations. At 20 K in the distorted phase, whereas the flower
shape of the outermost Fermi surface does not change from that at 300 K,
topology of the inner Fermi surfaces is strongly modified by the lattice
distortion. The Fermi surface reconstruction by the distortion depends on the
orbital character of the Fermi surfaces, suggesting importance of Ir 5d and/or
Te 5p orbital symmetry breaking.Comment: 4pages, 4figure
A Pilot Study: The Beneficial Effects of Combined Statin-exercise Therapy on Cognitive Function in Patients with Coronary Artery Disease and Mild Cognitive Decline.
Objective Hypercholesterolemia, a risk factor in cognitive impairment, can be treated with statins. However, cognitive decline associated with "statins" (HMG-CoA reductase inhibitors) is a clinical concern. This pilot study investigated the effects of combining statins and regular exercise on cognitive function in coronary artery disease (CAD) patients with prior mild cognitive decline. Methods We recruited 43 consecutive CAD patients with mild cognitive decline. These patients were treated with a statin and weekly in-hospital aerobic exercise for 5 months. We measured serum lipids, exercise capacity, and cognitive function using the mini mental state examination (MMSE). Results Low-density lipoprotein cholesterol levels were significantly decreased, and maximum exercise capacity (workload) was significantly increased in patients with CAD and mild cognitive decline after treatment compared with before. Combined statin-exercise therapy significantly increased the median (range) MMSE score from 24 (22-25) to 25 (23-27) across the cohort (p<0.01). Changes in body mass index (BMI) were significantly and negatively correlated with changes in the MMSE. After treatment, MMSE scores in the subgroup of patients that showed a decrease in BMI were significantly improved, but not in the BMI-increased subgroup. Furthermore, the patients already on a statin at the beginning of the trial displayed a more significant improvement in MMSE score than statin-naïve patients, implying that exercise might be the beneficial aspect of this intervention as regards cognition. In a multivariate logistic regression analysis adjusted for age >65 years, sex, and presence of diabetes mellitus, a decrease in BMI during statin-exercise therapy was significantly correlated with an increase in the MMSE score (odds ratio: 4.57, 95% confidence interval: 1.05-20.0; p<0.05). Conclusion Statin-exercise therapy may help improve cognitive dysfunction in patients with CAD and pre-existing mild cognitive decline
Important Roles of Te 5p and Ir 5d Spin-orbit Interactions on the Multi-band Electronic Structure of Triangular Lattice Superconductor Ir1-xPtxTe2
We report an angle-resolved photoemission spectroscopy (ARPES) study on a
triangular lattice superconductor IrPtTe in which the Ir-Ir
or Te-Te bond formation, the band Jahn-Teller effect, and the spin-orbit
interaction are cooperating and competing with one another. The Fermi surfaces
of the substituted system are qualitatively similar to the band structure
calculations for the undistorted IrTe with an upward chemical potential
shift due to electron doping. A combination of the ARPES and the band structure
calculations indicates that the Te spin-orbit interaction removes the
orbital degeneracy and induces type spin-orbit
coupling near the A point. The inner and outer Fermi surfaces are entangled by
the Te and Ir spin-orbit interactions which may provide exotic
superconductivity with singlet-triplet mixing.Comment: 10 pages, 4 figure
NUMERICAL EXPERIMENT ON EFFECT OF SURFACE ROUGHNESS FOR HEAT AND FLOW AROUND TWO CONTACTING PARTICLES
The aim of the present work is to establish a model of heat transfer between particles by using the numerical simulation that can be incorporated in the discrete element method (DEM). The contact heat transfer between particles can be regarded as a contact thermal resistance problem. In the thermal resistance model, the local characteristics, e.g. exact contact area and heat flux distribution on particle surface, are important. However, it is difficult to measure such factors in detail. Accordingly, the authors utilized a numerical simulation. The thermal resistance was modeled by placing a small solid block between the contacting areas in the simulation. The small solid thickness represents the surface roughness and the width represents the contact force. The simulated temperature profile along the center line through two particle’s centers well agreed with measured one
- …