179 research outputs found

    Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project

    Get PDF
    The International Fusion Materials Irradiation Facility (IFMIF), presently in the Engineering Validation and Engineering Design Activities (EVEDA) phase was started from 2007 under the frame of the Broader Approach (BA) agreement. In the activities, a prototype Li loop with the world's highest flow rate of 3000L/min was constructed in 2010, and it succeeded in generating a 100mm wide and 25mm thick with a free-surface lithium flow along a concave back plate steadily at a high-speed of 15m/s at 250°C for 1300h. In the demonstration operation it was needed to develop the Li flowing measurement system with precious resolution less than 0.1mm, and a new wave height measuring method which is laser-probe method was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the variation in the Li flowing thickness which is required in the IFMIF specification was ±1mm or less as the liquid Li target, and the result was satisfied with it and the feasibility of the long-term stable liquid Li flow was also verified. The results of the other engineering validation tests such as lithium purification tests of lithium target facility have also been evaluated and summarized

    Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

    Get PDF
    We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90 degrees magnetic coupling through an fe-o layer. we investigated the magnetic properties and the relationship between the magnetic domain size and the 90 degrees magnetic coupling via experiments and calculations. two types of samples with a ru buffer and a (ni80fe20)cr-40 buffer were prepared, and we found that with the nifecr buffer, the sample has a flatter fe-o layer, leading to stronger 90 degrees magnetic coupling and a smaller domain size compared with the ru buffer sample. this trend is well explained by the bilinear and biquadratic coupling coefficients, a(12) and b-12, in landau-lifshitz-gilbert simulations, suggesting the possibility of using both afm and fm properties by controlling the quasi-afm domain size

    First-in-Human Phase I Study of an Oral HSP90 Inhibitor, TAS-116, in Patients with Advanced Solid Tumors.

    Get PDF
    HSP90 is involved in stability and function of cancer-related proteins. This study was conducted to define the MTD, safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor efficacy of TAS-116, a novel class, orally available, highly selective inhibitor of HSP90. Patients with advanced solid tumors received TAS-116 orally once daily (QD, step 1) or every other day (QOD, step 2) in 21-day cycles. Each step comprised a dose escalation phase to determine MTD and an expansion phase at the MTD. In the dose escalation phase, an accelerated dose-titration design and a "3+3" design were used. Sixty-one patients were enrolled in Japan and the United Kingdom. MTD was determined to be 107.5 mg/m2/day for QD, and 210.7 mg/m2/day for QOD. In the expansion phase of step 1, TAS-116 was administered 5 days on/2 days off per week (QD × 5). The most common treatment-related adverse events included gastrointestinal disorders, creatinine increases, AST increases, ALT increases, and eye disorders. Eye disorders have been reported with HSP90 inhibitors; however, those observed with TAS-116 in the expansion phases were limited to grade 1. The systemic exposure of TAS-116 increased dose-proportionally with QD and QOD regimens. Two patients with non-small cell lung cancer and one patient with gastrointestinal stromal tumor (GIST) achieved a confirmed partial response. TAS-116 had an acceptable safety profile with some antitumor activity, supporting further development of this HSP90 inhibitor.This is a result from a first-in-human study, in which the HSP90 inhibitor TAS-116 demonstrated preliminary antitumor efficacy in patients with advanced solid tumors, including those with heavily pretreated GIST

    Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C

    Get PDF
    Although the oxidative stress frequently occurs in patients with chronic hepatitis C, its role in future hepatocellular carcinoma (HCC) development is unknown. Hepatic 8-hydroxydeoxyguanosine (8-OHdG) was quantified using liver biopsy samples from 118 naïve patients who underwent liver biopsy from 1995 to 2001. The predictability of 8-OHdG for future HCC development and its relations to epidemiologic, biochemical and histological baseline characteristics were evaluated. During the follow-up period (mean was 6.7±3.3 years), HCC was identified in 36 patients (30.5%). Univariate analysis revealed that 16 variables, including 8-OHdG counts (65.2±20.2 vs 40.0±23.5 cells per 105 μm2, P<0.0001), were significantly different between patients with and without HCC. Cox proportional hazard analysis showed that the hepatic 8-OHdG (P=0.0058) and fibrosis (P=0.0181) were independent predicting factors of HCC. Remarkably, 8-OHdG levels were positively correlated with body and hepatic iron storage markers (vs ferritin, P<0.0001 vs hepatic iron score, P<0.0001). This study showed that oxidative DNA damage is associated with increased risk for HCC and hepatic 8-OHdG levels are useful as markers to identify the extreme high-risk subgroup. The strong correlation between hepatic DNA damage and iron overload suggests that the iron content may be a strong mediator of oxidative stress and iron reduction may reduce HCC incidence in patients with chronic hepatitis C
    • …
    corecore