28 research outputs found

    High Efficacy of Preoperative Low-Dose Radiotherapy with Sanazole (AK-2123) for Extraskeletal Ewing's Sarcoma: A Case Report

    Get PDF
    Extraskeletal Ewing's sarcoma is a rare soft tissue tumor that is morphologically indistinguishable from Ewing's sarcoma of bone. We report a case of extraskeletal Ewing's sarcoma with several systemic problems. A 69-year-old man presented with a 5-month history of a rapidly enlarging mass in the right thigh. Because preoperative radiotherapy with sanazole (AK-2123) contributed the tumor mass reduction down to 40% in size, the tumor was successfully resected with clear surgical margins and repaired with a musculocutaneous flap. The high efficacy of pre-operative low-dose radiotherapy with sanazole was histologically confirmed that the resected tumor specimen involved no viable tumor cells and showed 100% necrosis. Based on clinical outcomes in this case, the combined modality of pre-operative low-dose radiotherapy with hypoxic cell radiosensitizer and adequate surgical resection might provide for the useful clinical application of extraskeletal Ewing's sarcoma treatment

    Intratumoral peptide injection enhances tumor cell antigenicity recognized by cytotoxic T lymphocytes: a potential option for improvement in antigen-specific cancer immunotherapy

    Get PDF
    Antigen-specific cancer immunotherapy is a promising strategy for improving cancer treatment. Recently, many tumor-associated antigens and their epitopes recognized by cytotoxic T lymphocytes (CTLs) have been identified. However, the density of endogenously presented antigen-derived peptides on tumor cells is generally sparse, resulting in the inability of antigen-specific CTLs to work effectively. We hypothesize that increasing the density of an antigen-derived peptide would enhance antigen-specific cancer immunotherapy. Here, we demonstrated that intratumoral peptide injection leads to additional peptide loading onto major histocompatibility complex class I molecules of tumor cells, enhancing tumor cell recognition by antigen-specific CTLs. In in vitro studies, human leukocyte antigen (HLA)-A*02:01-restricted glypican-3(144-152) (FVGEFFTDV) and cytomegalovirus(495-503) (NLVPMVATV) peptide-specific CTLs showed strong activity against all peptide-pulsed cell lines, regardless of whether the tumor cells expressed the antigen. In in vivo studies using immunodeficient mice, glypican-3(144-152) and cytomegalovirus(495-503) peptides injected into a solid mass were loaded onto HLA class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, intratumoral injection of ovalbumin(257-264) peptide (SIINFEKL) was effective for tumor growth inhibition and survival against ovalbumin-negative tumors without adverse reactions. Moreover, we demonstrated an antigen-spreading effect that occurred after intratumoral peptide injection. Intratumoral peptide injection enhances tumor cell antigenicity and may be a useful option for improvement in antigen-specific cancer immunotherapy against solid tumors

    Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)

    Get PDF
    55 PĂĄg.In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through the Laulima Government Solutions, LLC, prime contract with the U.S. National Institute of Allergy and Infec tious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC, under Contract No. HHSN272201800013C. U.J.B. was supported by the Division of Intramural Resarch, NIAID. This work was also funded in part by Contract No. HSHQDC15-C-00064 awarded by DHS S and T for the management and operation of The National Biodefense Analysis and Countermeasures Centre, a federally funded research and development centre operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowl edges support from the Mississippi Agricultural and Forestry Experiment Station (MAFES), USDA-ARS project 58-6066-9-033 and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch Project, under Accession Number 1021494. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of the Army, the U.S. Department of Defence, the U.S. Department of Health and Human Services, including the Centres for Disease Control and Prevention, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S and T), or of the institutions and companies affiliated with the authors. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The U.S. departments do not endorse any products or commercial services mentioned in this publication. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.Peer reviewe

    QT is longer in drug-free patients with schizophrenia compared with age-matched healthy subjects.

    No full text
    The potassium voltage-gated channel KCNH2 is a well-known gene in which mutations induce familial QT interval prolongation. KCNH2 is suggested to be a risk gene for schizophrenia. Additionally, the disturbance of autonomic control, which affects the QT interval, is known in schizophrenia. Therefore, we speculate that schizophrenic patients have characteristic features in terms of the QT interval in addition to the effect of antipsychotic medication. The QT interval of patients with schizophrenia not receiving antipsychotics (n = 85) was compared with that of patients with schizophrenia receiving relatively large doses of antipsychotics (n = 85) and healthy volunteers (n = 85). The QT interval was corrected using four methods (Bazett, Fridericia, Framingham or Hodges method). In ANCOVA with age and heart rate as covariates, patients not receiving antipsychotic treatment had longer QT intervals than did the healthy volunteers, but antipsychotics prolonged the QT interval regardless of the correction method used (P<0.01). Schizophrenic patients with and without medication had a significantly higher mean heart rate than did the healthy volunteers, with no obvious sex-related differences in the QT interval. The QT interval prolongation may be manifestation of a certain biological feature of schizophrenia
    corecore