5,547 research outputs found

    A Bilocal Field Theory in Four Dimensions

    Full text link
    A bilocal field theory having M\"{o}bius gauge invariance is proposed. In four dimensions there exists a zero momentum state of the first quantized model, which belongs to a non-trivial BRS cohomology class. A field theory lagrangian having a gauge invariance only in four dimensions is constructed.Comment: 13 pages, TEP-9R, LaTe

    D-brane Categories for Orientifolds -- The Landau-Ginzburg Case

    Get PDF
    We construct and classify categories of D-branes in orientifolds based on Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet parity action on the matrix factorizations plays the key role. This provides all the requisite data for an orientifold construction after embedding in string theory. One of our main results is a computation of topological field theory correlators on unoriented worldsheets, generalizing the formulas of Vafa and Kapustin-Li for oriented worldsheets, as well as the extension of these results to orbifolds. We also find a doubling of Knoerrer periodicity in the orientifold context.Comment: 45 pages, 6 figure

    Strings on pp-waves and massive two dimensional field theories

    Full text link
    We find a general class of pp-wave solutions of type IIB string theory such that the light cone gauge worldsheet lagrangian is that of an interacting massive field theory. When the light cone Lagrangian has (2,2) supersymmetry we can find backgrounds that lead to arbitrary superpotentials on the worldsheet. We consider situations with both flat and curved transverse spaces. We describe in some detail the background giving rise to the N=2 sine Gordon theory on the worldsheet. Massive mirror symmetry relates it to the deformed CP1CP^1 model (or sausage model) which seems to elude a purely supergravity target space interpretation.Comment: harvmac, 26 pages, v2,3: references added, typos correcte

    Orientifolds and Mirror Symmetry

    Full text link
    We study parity symmetries and crosscap states in classes of N=2 supersymmetric quantum field theories in 1+1 dimensions, including non-linear sigma models, gauged WZW models, Landau-Ginzburg models, and linear sigma models. The parity anomaly and its cancellation play important roles in many of them. The case of the N=2 minimal model are studied in complete detail, from all three realizations -- gauged WZW model, abstract RCFT, and LG models. We also identify mirror pairs of orientifolds, extending the correspondence between symplectic geometry and algebraic geometry by including unorientable worldsheets. Through the analysis in various models and comparison in the overlapping regimes, we obtain a global picture of orientifolds and D-branes.Comment: 137 page

    Preliminary Results from Recent Measurements of the Antiprotonic Helium Hyperfine Structure

    Full text link
    We report on preliminary results from a systematic study of the hyperfine (HF) structure of antiprotonic helium. This precise measurement which was commenced in 2006, has now been completed. Our initial analysis shows no apparent density or power dependence and therefore the results can be averaged. The statistical error of the observable M1 transitions is a factor of 60 smaller than that of three body quantum electrodynamic (QED) calculations, while their difference has been resolved to a precision comparable to theory (a factor of 10 better than our first measurement). This difference is sensitive to the antiproton magnetic moment and agreement between theory and experiment would lead to an increased precision of this parameter, thus providing a test of CPT invariance.Comment: 6 pages, 4 figure

    Orientifolds of Gepner Models

    Full text link
    We systematically construct and study Type II Orientifolds based on Gepner models which have N=1 supersymmetry in 3+1 dimensions. We classify the parity symmetries and construct the crosscap states. We write down the conditions that a configuration of rational branes must satisfy for consistency (tadpole cancellation and rank constraints) and spacetime supersymmetry. For certain cases, including Type IIB orientifolds of the quintic and a two parameter model, one can find all solutions in this class. Depending on the parity, the number of vacua can be large, of the order of 10^{10}-10^{13}. For other models, it is hard to find all solutions but special solutions can be found -- some of them are chiral. We also make comparison with the large volume regime and obtain a perfect match. Through this study, we find a number of new features of Type II orientifolds, including the structure of moduli space and the change in the type of O-planes under navigation through non-geometric phases.Comment: 142 page

    Influence of orbital forcing on the seasonality and regionality of the Asian Summer monsoon precipitation

    No full text
    International audienceThe response of Asian monsoon precipitation to contrasting orbital parameters is simulated using the MRI-CGCM climate model. Results show that for the 125 kya B. P. experiment, a large continental heating due to obliquity forcing is apparent and accounts for the strengthened cross equatorial flow, stronger monsoon westerly over the Arabian Sea, and an enhanced precipitation over the Indian subcontinent. For the 115 kya B. P. experiment, while the monsoon westerly becomes weaker in the Arabian Sea, the overall strength of the monsoon westerly becomes stronger in the Bay of Bengal. This eastward extension of the monsoon westerly converges with the equatorial trade wind to give rise to an increased precipitation over the maritime continent and Indochina peninsula. Such increase in precipitation is accompanied with an earlier onset of the Asian monsoon, and an earlier warming of the tropical SST due to precessional forcing. It is concluded that while the obliquity forcing creates the baseline land-sea contrast which maintains the Asian monsoon westerly, when such forcing is comparably weaker, the Indian monsoon is diminished and the precessional forcing becomes more dominating to create a distinct earlier warming of the tropical SST which leads to an earlier onset of the maritime monsoon over the western Pacific. This study implies that even under weaker insolation forcing, the precessional signal may act to enhance certain regional precipitation and onset timing of the Asian monsoon

    Beam Shape and Halo Monitor Study

    Get PDF
    The Beam Shape and Halo Monitor, designed by Masaki Hori, is the main diagnostic tool for the 3 MeV test stand scheduled in 2008. This detector will be able to measure the transverse halo generated in the RFQ and the Chopper-line and to detect and measure the longitudinal halo composed of the incompletely chopped bunches. Its principle of functioning is the following: H- ions hit a carbon foil and generate secondary electrons with the same spatial distribution than the incoming beam and a current depending on an emission coefficient given by the carbon foil. These electrons are accelerated towards a phosphor screen by an electric field applied between accelerating grids. Once the electrons reach the phosphor screen, they generate light which is transmitted to a CCD camera via optic fibers [1]. It is expected to give a time resolution of 1-2ns and a spatial resolution of 1mm. The first test of the BSHM done with a Laser has shown a spatial resolution bigger than 1cm and the time resolution bigger than 2ns[2]. The purpose of this study is to understand what are the processes which deteriorate the resolution and to show the benefits brought by adding a pre-accelerating grid in the detector

    Stretching short biopolymers by fields and forces

    Full text link
    We study the mechanical properties of semiflexible polymers when the contour length of the polymer is comparable to its persistence length. We compute the exact average end-to-end distance and shape of the polymer for different boundary conditions, and show that boundary effects can lead to significant deviations from the well-known long-polymer results. We also consider the case of stretching a uniformly charged biopolymer by an electric field, for which we compute the average extension and the average shape, which is shown to be trumpetlike. Our results also apply to long biopolymers when thermal fluctuations have been smoothed out by a large applied field or force.Comment: 10 pages, 7 figure

    Mirror Symmetry and a G2G_2 Flop

    Get PDF
    By applying mirror symmetry to D-branes in a Calabi-Yau geometry we shed light on a G2G_2 flop in M-theory relevant for large NN dualities in N=1{\cal N}=1 supersymmetric gauge theories. Furthermore, we derive superpotential for M-theory on corresponding G2G_2 manifolds for all A-D-E cases. This provides an effective method for geometric engineering of N=1{\cal N}=1 gauge theories for which mirror symmetry gives exact information about vacuum geometry. We also find a number of interesting dual descriptions.Comment: Identification of parameters as well as the computation of the superpotential is extended to all A-D-E cases. Additional references are also include
    • …
    corecore