12 research outputs found

    Forecasting Prorocentrum minimum blooms in the Chesapeake Bay using empirical habitat models

    Get PDF
    Aquaculturists, local beach managers, and other stakeholders require forecasts of harmful biotic events, so they can assess and respond to health threats when harmful algal blooms (HABs) are present. Based on this need, we are developing empirical habitat suitability models for a variety of Chesapeake Bay HABs to forecast their occurrence based on a set of physical-biogeochemical environmental conditions, and start with the dinoflagellate Prorocentrum minimum (also known as P. cordatum).To identify an optimal set of environmental variables to forecast P. minimum blooms, we first assumed a linear relationship between the environmental variables and the inverse of the logistic function used to forecast the likelihood of bloom presence, and repeated the method using more than 16,000 combinations of variables. By comparing goodness-of-fit, we found water temperature, salinity, pH, solar irradiance, and total organic nitrogen represented the most suitable set of variables. The resulting algorithm forecasted P. minimum blooms with an overall accuracy of 78%, though with a significant variability ~ 30-90% depending on region and season. To understand this variability and improve model performance, we incorporated nonlinear effects into the model by implementing a generalized additive model. Even without considering interactions between the five variables used to train the model, this yielded an increase in overall model accuracy (~ 81%) due to the model’s ability to refine the regions in which P. minimum blooms occurred. Including nonlinear interactions increased the overall model accuracy even further (~ 85%) by accounting for seasonality in the interaction between solar irradiance and water temperature. Our findings suggest that the influence of predictors of these blooms change in time and space, and that model complexity impacts the model performance and our interpretation of the driving factors causing P. minimum blooms. Apart from their forecasting potential, our results may be particularly useful when constructing explicit relationships between environmental conditions and P. minimum presence in mechanistic models

    Seasonal variations in flocculation and erosion affecting the large-scale suspended sediment distribution in the Scheldt estuary : the importance of biotic effects

    No full text
    Many estuaries exhibit seasonality in the estuary-scale distribution of suspended particulate matter (SPM). This SPM distribution depends on various factors, including freshwater discharge, salinity intrusion, erodibility, and the ability of cohesive SPM to flocculate into larger aggregates. Various authors indicate that biotic factors, such as the presence of algae and their excretion of sticky transparent exopolymer particles (TEP), affect the flocculation and erosion processes. Consequently, seasonality in these biotic factors may play a role in the observed seasonality in SPM. Whereas the impact of abiotic factors on seasonality in SPM is well studied, the relative contribution of biotically induced seasonality is largely unknown. In this study, we employ two approaches to assess the aggregated importance of biotically induced seasonality in flocculation and erosion on seasonality in SPM in the Scheldt estuary. In the first approach, we focus on seasonality of in situ observations in the Scheldt estuary of turbidity, floc size, Chlorophyll-a, and TEP, showing that the abiotic parameters show seasonality, while seasonality in TEP is ambiguous. The second approach concerns a reverse engineering method to calibrate biotically affected parameters of a coupled sediment transport-flocculation model to turbidity observations, allowing us to compare the modeled SPM concentrations to the observations. Driven by seasonality in freshwater discharge, the model captures the observed seasonality in SPM without requiring biotically induced seasonality in flocculation and erosion, which is supported by the absence of seasonality in TEP

    Image_1_Forecasting Prorocentrum minimum blooms in the Chesapeake Bay using empirical habitat models.pdf

    No full text
    Aquaculturists, local beach managers, and other stakeholders require forecasts of harmful biotic events, so they can assess and respond to health threats when harmful algal blooms (HABs) are present. Based on this need, we are developing empirical habitat suitability models for a variety of Chesapeake Bay HABs to forecast their occurrence based on a set of physical-biogeochemical environmental conditions, and start with the dinoflagellate Prorocentrum minimum (also known as P. cordatum).To identify an optimal set of environmental variables to forecast P. minimum blooms, we first assumed a linear relationship between the environmental variables and the inverse of the logistic function used to forecast the likelihood of bloom presence, and repeated the method using more than 16,000 combinations of variables. By comparing goodness-of-fit, we found water temperature, salinity, pH, solar irradiance, and total organic nitrogen represented the most suitable set of variables. The resulting algorithm forecasted P. minimum blooms with an overall accuracy of 78%, though with a significant variability ~ 30-90% depending on region and season. To understand this variability and improve model performance, we incorporated nonlinear effects into the model by implementing a generalized additive model. Even without considering interactions between the five variables used to train the model, this yielded an increase in overall model accuracy (~ 81%) due to the model’s ability to refine the regions in which P. minimum blooms occurred. Including nonlinear interactions increased the overall model accuracy even further (~ 85%) by accounting for seasonality in the interaction between solar irradiance and water temperature. Our findings suggest that the influence of predictors of these blooms change in time and space, and that model complexity impacts the model performance and our interpretation of the driving factors causing P. minimum blooms. Apart from their forecasting potential, our results may be particularly useful when constructing explicit relationships between environmental conditions and P. minimum presence in mechanistic models.</p
    corecore